A Novel Turbo Unequal Error Protection Scheme for Image Steganography

An Unequal Error Protection (UEP) scheme for image steganography is proposed in this paper. When stego images are transmitted through a noisy channel, the embedded message may be more sensitive to noise than the cover message. Therefore, we propose a Turbo UEP coding scheme for steganographic communication in a noisy channel, which provides higher error protection for the embedded message and lower error protection for the cover message. Simulations show that this coding scheme provides different error protection levels in one coding process and maintains the coding rate constant. In addition, an application scheme of the proposed Turbo UEP code for steganographic communication is presented, and the experimental results show that the extracted secret images have better quality than the cover images after decoding.

[1]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[2]  Jessica J. Fridrich,et al.  Matrix embedding for large payloads , 2006, IEEE Trans. Inf. Forensics Secur..

[3]  William E. Ryan,et al.  Punctured turbo-codes for BPSK/QPSK channels , 1999, IEEE Trans. Commun..

[4]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[5]  Maan A. Kousa,et al.  Puncturing effects on turbo codes , 2002 .

[6]  Weiming Zhang,et al.  A Double Layered “Plus-Minus One” Data Embedding Scheme , 2007, IEEE Signal Processing Letters.

[7]  Jessica J. Fridrich,et al.  Grid Colorings in Steganography , 2007, IEEE Transactions on Information Theory.

[8]  Joachim Hagenauer,et al.  Rate-compatible punctured convolutional codes (RCPC codes) and their applications , 1988, IEEE Trans. Commun..

[9]  Shu Lin,et al.  Computer search for binary cyclic UEP codes of odd length up to 65 , 1990, IEEE Trans. Inf. Theory.

[10]  Anindya Sarkar,et al.  Matrix Embedding With Pseudorandom Coefficient Selection and Error Correction for Robust and Secure Steganography , 2010, IEEE Transactions on Information Forensics and Security.

[11]  van Wj Wil Gils,et al.  On linear unequal error protection codes , 1982 .

[12]  S. S. Pietrobon,et al.  Rate compatible turbo codes , 1995 .

[13]  Jessica J. Fridrich,et al.  Wet paper codes with improved embedding efficiency , 2006, IEEE Transactions on Information Forensics and Security.

[14]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[15]  Chao Xu,et al.  An improved unequal error protection turbo codes , 2005, Proceedings. 2005 International Conference on Wireless Communications, Networking and Mobile Computing, 2005..

[16]  David Haccoun,et al.  High-rate punctured convolutional codes for Viterbi and sequential decoding , 1989, IEEE Trans. Commun..

[17]  Miguel R. D. Rodrigues,et al.  Analysis and design of punctured rate-1/2 turbo codes exhibiting low error floors , 2009, IEEE Journal on Selected Areas in Communications.

[18]  W. Henkel,et al.  Path Pruning for Unequal Error Protection Turbo Codes , 2006, 2006 International Zurich Seminar on Communications.

[19]  Rolando Carrasco,et al.  A Novel Technique for the Evaluation of the Transfer Function of Parallel Concatenated Convolutional Codes , 2006 .

[20]  Xinpeng Zhang,et al.  Dynamical running coding in digital steganography , 2006, IEEE Signal Processing Letters.

[21]  Wil J. van Gils,et al.  Two topics on linear unequal error protection codes: Bounds on their length and cyclic code classes , 1983, IEEE Trans. Inf. Theory.

[22]  Jiwu Huang,et al.  Edge Adaptive Image Steganography Based on LSB Matching Revisited , 2010, IEEE Transactions on Information Forensics and Security.

[23]  Masoud Salehi,et al.  Performance Bounds for Unequal Error Protecting Turbo Codes , 2009, IEEE Transactions on Communications.

[24]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.