The expanding dusty bipolar nebula around the nova V1280 Scorpi

V1280 Sco is one of the slowest dust-forming nova ever historically observed. We performed multi-epoch high-spatial resolution observations of the circumstellar dusty environment of V1280 Sco to investigate the level of asymmetry of the ejecta We observed V1280 Sco in 2009, 2010 and 2011 using unprecedented high angular resolution techniques. We used the NACO/VLT adaptive optics system in the J, H and K bands, together with contemporaneous VISIR/VLT mid-IR imaging that resolved the dust envelope of V1280 Sco, and SINFONI/VLT observations secured in 2011. We report the discovery of a dusty hourglass-shaped bipolar nebula. The apparent size of the nebula increased from 0.30" x 0.17" in July 2009 to 0.64" x 0.42" in July 2011. The aspect ratio suggests that the source is seen at high inclination. The central source shines efficiently in the K band and represents more than 56+/-5% of the total flux in 2009, and 87+/-6% in 2011. A mean expansion rate of 0.39+/-0.03 mas per day is inferred from the VISIR observations in the direction of the major axis, which represents a projected upper limit. Assuming that the dust shell expands in that direction as fast as the low-excitation slow ejecta detected in spectroscopy, this yields a lower limit distance to V1280 Sco of 1kpc; however, the systematic errors remain large due to the complex shape and velocity field of the dusty ejecta. The dust seems to reside essentially in the polar caps and no infrared flux is detected in the equatorial regions in the latest dataset. This may imply that the mass-loss was dominantly polar.

[1]  M. Bode,et al.  Shaping of nova remnants by binary motion , 1997 .

[2]  N. Soker,et al.  The Role of Planets in Shaping Planetary Nebulae , 2011, 1102.4647.

[3]  M. F. Bode,et al.  EXQUISITE NOVA LIGHT CURVES FROM THE SOLAR MASS EJECTION IMAGER (SMEI) , 2010, 1009.1737.

[4]  Olivier Chesneau,et al.  VLTI monitoring of the dust formation event of the Nova V1280 Scorpii , 2008, 0804.4129.

[5]  Ramkrishna Das,et al.  Near-infrared studies of V1280 Sco (Nova Scorpii 2007) , 2008, 0809.4338.

[6]  M. Bode,et al.  On the asphericity of nova remnants caused by rotating white dwarf envelopes , 1998 .

[7]  Romain Petrov,et al.  Imaging the spinning gas and dust in the disc around the supergiant A[e] star HD 62623 , 2010, 1012.2957.

[8]  D. Mékarnia,et al.  A mid-infrared imaging catalogue of post-asymptotic giant branch stars , 2011, 1102.4561.

[9]  J. M. C. Rawlings,et al.  Infrared spectroscopy of Nova Cassiopeiae 1993 ¿ IV. A closer look at the dust , 2005 .

[10]  J. Solf On the geometrical and kinematic structure of the postnova shell of HR Delphini , 1983 .

[11]  O. Marco,et al.  V605 Aquilae: a born again star, a nova or both? , 2010, 1009.3138.

[12]  I. Hachisu,et al.  EFFECTS OF A COMPANION STAR ON SLOW NOVA OUTBURSTS—TRANSITION FROM STATIC TO WIND EVOLUTIONS , 2011, 1109.1499.

[13]  O. Chesneau,et al.  Resolving the dusty circumstellar environment of the A[e] supergiant HD 62623 with the VLTI/MIDI , 2009, 0912.1954.

[14]  Akira Arai,et al.  Discovery of Multiple High-Velocity Narrow Circumstellar NaI D Lines in Nova V1280 Sco , 2010 .

[15]  C. Hummel,et al.  A dense disk of dust around the born-again Sakurai's object , 2008, 0811.3295.

[16]  B. Balick,et al.  The evolution of M 2–9 from 2000 to 2010 , 2011, 1102.5634.

[17]  M. Barlow,et al.  Infrared space observatory and ground-based infrared observations of the classical Nova V723 Cassiopeiae , 2003 .

[18]  J. Janík,et al.  Binaries - Key to Comprehension of the Universe , 2010 .

[19]  J. Thorstensen,et al.  Two Galactic Supersoft X‐Ray Binaries: V Sagittae and T Pyxidis , 1998 .

[20]  T. R. Marsh,et al.  THE EXPANDING BIPOLAR SHELL OF THE HELIUM NOVA V445 PUPPIS , 2009, 0910.1069.

[21]  A. Arai,et al.  Five-year optical and near-infrared observations of the extremely slow nova V1280 Scorpii , , 2012, 1203.6725.

[22]  G. Zins,et al.  The 2011 outburst of the recurrent nova T Pyxidis. Evidence for a face-on bipolar ejection , 2011 .

[23]  B. Paxton,et al.  On the α formalism for the common envelope interaction , 2010, 1010.4374.

[24]  D. Harman,et al.  Hubble Space Telescope imaging and ground-based spectroscopy of old nova shells — II. The bipolar shell of the slow nova HR Del , 2003 .

[25]  N. Smith,et al.  A disc inside the bipolar planetary nebula M2-9 , 2010, 1011.5671.

[26]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[27]  Robert D. Gehrz,et al.  Bipolar symbiotic planetary nebulae in the thermal infrared: M2-9, Mz 3, and He 2-104 , 2005 .

[28]  J. Truran,et al.  The common envelope phase in the outbursts of classical novae , 1990 .

[29]  H. Duerbeck,et al.  Optical Imaging of Nova Shells and the Maximum Magnitude-Rate of Decline Relationship , 2000, astro-ph/0006458.

[30]  L. Bernstein,et al.  SMALL CARBONACEOUS MOLECULES, ETHYLENE OXIDE (c-C2H4O) AND CYCLOPROPENYLIDENE (c-C3H2): SOURCES OF THE UNIDENTIFIED INFRARED BANDS? , 2009 .

[31]  Pierre Kervella,et al.  The Close Circumstellar Environment of Betelgeuse: Adaptive Optics Spectro-imaging in the Near-IR with VLT/NACO , 2009, 0907.1843.

[32]  A. Zacchei,et al.  THE SECOND-GENERATION GUIDE STAR CATALOG: DESCRIPTION AND PROPERTIES , 2008, 0807.2522.

[33]  R. D. Campbell,et al.  The Distance and Morphology of V723 Cassiopeiae (NOVA CASSIOPEIA 1995) , 2011 .

[34]  R. Sahai,et al.  THE DUSTY CIRCUMSTELLAR DISKS OF B[e] SUPERGIANTS IN THE MAGELLANIC CLOUDS , 2010 .

[35]  M. Diaz,et al.  HR Del REMNANT ANATOMY USING TWO-DIMENSIONAL SPECTRAL DATA AND THREE-DIMENSIONAL PHOTOIONIZATION SHELL MODELS , 2009, 0909.4689.