Ab initio determination of the ionization potentials of DNA and RNA nucleobases.

Quantum chemical high level ab initio coupled-cluster and multiconfigurational perturbation methods have been used to compute vertical and adiabatic ionization potentials of the five canonical DNA and RNA nucleobases: uracil, thymine, cytosine, adenine, and guanine. Several states of their cations have been also calculated. The present results represent a systematic compendium of these magnitudes, establishing theoretical reference values at a level not reported before, calibrating computational strategies, and guiding the assignment of the features in the experimental photoelectron spectra.

[1]  Markus P. Fülscher,et al.  Theoretical Study of the Electronic Spectroscopy of Peptides. III. Charge-Transfer Transitions in Polypeptides , 1998 .

[2]  P. Lebreton,et al.  UV photoelectron and quantum mechanical characterization of DNA and RNA bases: valence electronic structures of adenine, 1,9-dimethyl-guanine, 1-methylcytosine, thymine and uracil , 1989 .

[3]  N. Hush,et al.  Ionization potentials and donor properties of nucleic acid bases and related compounds , 1975 .

[4]  T. J. O'Donnell,et al.  UV photoelectron studies of biological pyrimidines: the valence electronic structure of methyl substituted uracils , 1976 .

[5]  P. Lebreton,et al.  Ultraviolet photoelectron studies of biological pyrimidines. The valence electronic structure of cytosine , 1978 .

[6]  J. V. Ortiz,et al.  Ionization Energies and Dyson Orbitals of Thymine and Other Methylated Uracils , 2002 .

[7]  M. Sevilla,et al.  Ab initio molecular orbital calculations on DNA base pair radical ions: effect of base pairing on proton-transfer energies, electron affinities, and ionization potentials , 1992 .

[8]  S. McGlynn,et al.  Photoelectron spectroscopy of carbonyls. Biological molecules , 1977 .

[9]  Markus P. Fülscher,et al.  Multiconfigurational perturbation theory: Applications in electronic spectroscopy , 1996 .

[10]  Paras N. Prasad,et al.  Introduction to Biophotonics , 2003 .

[11]  Manuela Merchán,et al.  Quantum chemistry of the excited state: 2005 overview , 2005 .

[12]  H. Paretzke,et al.  Calculation of electron impact ionization cross sections of DNA using the Deutsch–Märk and Binary–Encounter–Bethe formalisms , 2003 .

[13]  M. Sevilla,et al.  Structure and Relative Stability of Deoxyribose Radicals in a Model DNA Backbone: Ab Initio Molecular Orbital Calculations , 1995 .

[14]  B. Roos,et al.  A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2) , 2004 .

[15]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[16]  L. Serrano-Andrés,et al.  II - Ab Initio Methods for Excited States , 2005 .

[17]  Massimo Olivucci,et al.  I - Computational Photochemistry , 2005 .

[18]  Nino Russo,et al.  Theoretical determination of electron affinity and ionization potential of DNA and RNA bases , 2000 .

[19]  Raymond Bonnett,et al.  Chemical Aspects of Photodynamic Therapy , 2000 .

[20]  J. V. Ortiz,et al.  Ionization Energies and Dyson Orbitals of Cytosine and 1-Methylcytosine , 2003 .

[21]  M. Rooman,et al.  Contribution of cation-pi interactions to the stability of protein-DNA complexes. , 2000, Journal of molecular biology.

[22]  N. Forsberg,et al.  Vibronic structure in triatomic molecules: The hydrocarbon flame bands of the formyl radical (HCO). A theoretical study , 1998 .

[23]  S. J. Singer,et al.  Domain energies of the dipolar lattice gas , 1992 .

[24]  B. Pullman,et al.  The ionization potentials of biological purines and pyrimidines. , 1967, Tetrahedron letters.

[25]  M. Sevilla,et al.  Ab initio molecular orbital calculations of DNA radical ions. 5. Scaling of calculated electron affinities and ionization potentials to experimental values , 1995 .

[26]  S. McGlynn,et al.  Photoelectron spectroscopy of carbonyls. Ureas, uracils, and thymine 1,2. , 1976, Journal of the American Chemical Society.

[27]  Sukhodub Lf,et al.  Ionization potentials of nucleic acid nitrogenous bases , 1976 .

[28]  Y. Varshavsky,et al.  Ionization potentials and electron-donor ability of nucleic acid babes and their analogues , 1976 .

[29]  D. Close Calculation of the Ionization Potentials of the DNA Bases in Aqueous Medium , 2004 .

[30]  Steen Steenken,et al.  Purine bases, nucleosides, and nucleotides: aqueous solution redox chemistry and transformation reactions of their radical cations and e- and OH adducts , 1989 .

[31]  Marianne Rooman,et al.  Basis set and electron correlation effects on ab initio calculations of cation-π/H-bond stair motifs , 2003 .

[32]  D. M. Close Oxidative damage to cytosine: Implication for the study of radiation-induced damage to DNA , 2003 .

[33]  S. McGlynn,et al.  Photoelectron spectroscopy of some biological molecules , 1978 .

[34]  Roland Lindh,et al.  Towards an accurate molecular orbital theory for excited states: Ethene, butadiene, and hexatriene , 1993 .

[35]  C. Crespo-Hernández,et al.  Photoionization of DNA and RNA Bases, Nucleosides and Nucleotides Through a Combination of One- and Two-photon Pathways upon 266 nm Nanosecond Laser Excitation¶ , 2002, Photochemistry and photobiology.

[36]  Y. Yu,et al.  Intrinsic acidity and redox properties of the adenine radical cation 1 1 Dedicated to the memory of , 1999 .

[37]  J. V. Ortiz,et al.  Electron propagator calculations on uracil and adenine ionization energies , 2000 .

[38]  L. Serrano-Andrés,et al.  Determination of the lowest-energy oxidation site in nucleotides: 2'-deoxythymidine 5'-monophosphate anion. , 2006, The journal of physical chemistry. B.

[39]  R. J. Boyd,et al.  Electron affinities and ionization potentials of nucleotide bases , 2000 .

[40]  A. Schweig,et al.  Functional subunits in the nucleic acid bases uracil and thymine , 1975 .

[41]  Y. Ishikawa,et al.  Ab initio ionization energy thresholds of DNA and RNA bases in gas phase and in aqueous solution , 2004 .

[42]  P. Lebreton,et al.  Ultraviolet photoelectron studies of the ground-state electronic structure and gas-phase tautomerism of purine and adenine , 1980 .

[43]  J. V. Ortiz,et al.  Electron Propagator Theory of Guanine and Its Cations: Tautomerism and Photoelectron Spectra , 2000 .

[44]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .

[45]  B. Roos,et al.  Theoretical study of the electronic spectrum of magnesium-porphyrin , 1999 .

[46]  A. Gräslund,et al.  Ionic Base Radicals in γ-irradiated Oriented Non-deuterated and Fully Deuterated DNA , 1975 .