Equations on palindromes and circular words

In this paper we consider several types of equations on words, motivated by the attempt of characterizing the class of polyominoes that tile the plane by translation in two distinct ways. Words coding the boundary of these polyominoes satisfy an equation whose solutions are in bijection with a subset of the solutions of equations of the form ABA@?B@?=XYX@?Y@?. It turns out that the solutions are strongly related to local periodicity involving palindromes and conjugate words.

[1]  Jean-Paul Allouche,et al.  Palindrome complexity , 2003, Theor. Comput. Sci..

[2]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[3]  A. Blondin-Massé,et al.  Palindromic lacunas of the Thue-Morse word ∗ , 2008 .

[4]  S. Lang Number Theory III , 1991 .

[5]  S. Labbé,et al.  Combinatorial properties of f-palindromes in the Thue-Morse sequence ∗ , 2010 .

[6]  Srečko Brlek,et al.  Every polyomino yields at most two square tilings , 2010 .

[7]  Danièle Beauquier,et al.  On translating one polyomino to tile the plane , 1991, Discret. Comput. Geom..

[8]  Jacques-Olivier Lachaud,et al.  Lyndon + Christoffel = digitally convex , 2009, Pattern Recognit..

[9]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[10]  Eric Goodstein On Sums of Digits , 1941 .

[11]  Aviezri S. Fraenkel,et al.  Disjoint covering systems of rational beatty sequences , 1986, J. Comb. Theory, Ser. A.

[12]  Michael Baake A Note on Palindromicity , 1999 .

[13]  Srecko Brlek,et al.  Christoffel and Fibonacci Tiles , 2009, DGCI.

[14]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[15]  Barry Simon,et al.  Singular continuous spectrum for palindromic Schrödinger operators , 1995 .

[16]  S. Labbé Propriétés combinatoires des f-palindromes , 2008 .

[17]  Andrea Frosini,et al.  Reconstructing words from a fixed palindromic length sequence , 2008, IFIP TCS.

[18]  Xavier Provençal Combinatoire des mots, géométrie discrète et pavages , 2008 .

[19]  Jeffrey Shallit,et al.  Sums of Digits, Overlaps, and Palindromes , 2000, Discret. Math. Theor. Comput. Sci..

[20]  Jamie Simpson,et al.  DISJOINT BEATTY SEQUENCES , 2004 .

[21]  Xavier Provençal COMBINATOIRE DES MOTS, GÉOMÉTRIE DISCRÈTE ET , 2008 .

[22]  Geneviève Paquin Mots équilibrés et mots lisses , 2008 .