Equations on palindromes and circular words
暂无分享,去创建一个
[1] Jean-Paul Allouche,et al. Palindrome complexity , 2003, Theor. Comput. Sci..
[2] B. Ripley,et al. Pattern Recognition , 1968, Nature.
[3] A. Blondin-Massé,et al. Palindromic lacunas of the Thue-Morse word ∗ , 2008 .
[4] S. Lang. Number Theory III , 1991 .
[5] S. Labbé,et al. Combinatorial properties of f-palindromes in the Thue-Morse sequence ∗ , 2010 .
[6] Srečko Brlek,et al. Every polyomino yields at most two square tilings , 2010 .
[7] Danièle Beauquier,et al. On translating one polyomino to tile the plane , 1991, Discret. Comput. Geom..
[8] Jacques-Olivier Lachaud,et al. Lyndon + Christoffel = digitally convex , 2009, Pattern Recognit..
[9] M. Lothaire. Algebraic Combinatorics on Words , 2002 .
[10] Eric Goodstein. On Sums of Digits , 1941 .
[11] Aviezri S. Fraenkel,et al. Disjoint covering systems of rational beatty sequences , 1986, J. Comb. Theory, Ser. A.
[12] Michael Baake. A Note on Palindromicity , 1999 .
[13] Srecko Brlek,et al. Christoffel and Fibonacci Tiles , 2009, DGCI.
[14] M. Lothaire,et al. Combinatorics on words: Frontmatter , 1997 .
[15] Barry Simon,et al. Singular continuous spectrum for palindromic Schrödinger operators , 1995 .
[16] S. Labbé. Propriétés combinatoires des f-palindromes , 2008 .
[17] Andrea Frosini,et al. Reconstructing words from a fixed palindromic length sequence , 2008, IFIP TCS.
[18] Xavier Provençal. Combinatoire des mots, géométrie discrète et pavages , 2008 .
[19] Jeffrey Shallit,et al. Sums of Digits, Overlaps, and Palindromes , 2000, Discret. Math. Theor. Comput. Sci..
[20] Jamie Simpson,et al. DISJOINT BEATTY SEQUENCES , 2004 .
[21] Xavier Provençal. COMBINATOIRE DES MOTS, GÉOMÉTRIE DISCRÈTE ET , 2008 .
[22] Geneviève Paquin. Mots équilibrés et mots lisses , 2008 .