폭발하중을 받는 콘크리트 벽체구조의 HFPB 해석

As blast load is impulsive load of extremely short duration with very high pressure, the strain rate and local damage effect of concrete structures subjected to blast loads should be considered in the dynamic analysis. However, the approximate and simplified analysis techniques, which have been generally used in the design and analysis of structures subjected to blast load, cannot accurately consider effect of boundary conditions and dynamic material properties. Problems on the accuracy and reliability of approximate analysis results have also been pointed out. In addition, as the response of concrete and reinforcement on dynamic load is different from that on static load, it is not appropriate to the use material model defined in the static or quasi-static conditions in calculating the response on the blast load. Therefore, this study suggest the dynamic analysis method using high fidelity physics based (HFPB) analysis to predict damage and failure of a concrete structure under the blast loading condition. The explicit finite element code LS-DYNA is adopted for HFPB analysis and single-degree-of-freedom (SDOF) system is used for comparison of results. From the analysis results, it is found that HFPB analysis could represent reasonable results compared to those of SDOF analysis and SDOF analysis might overestimate or underestimate the resistance of structure under blast load. In case of detailed analysis, HFPB analysis with proper material model is needed to evaluate the resistance of structure correctly.