Applications: Physical and Electronic Materials

Research and development of materials have thus far focused on controlling structures at diverse length scales—atoms, defects, fibers, interfaces, grains, pores. Because of the inherent complexity of such multiscale materials phenomena, computer modeling is expected to play an important role in the design of materials such as metals, semiconductors, ceramics, and glasses (Pechenik et al. 1999). Recent years have witnessed rapid progress in large-scale atomistic simulations, highly efficient algorithms for massively parallel machines, and immersive and interactive virtual environments for analyzing and controlling simulations in real time (Abraham 1997; Germann and Lomdahl 1999; Kalia et al. 2000; Vashishta et al. 1999). As a result of these advances, simulation efforts are being directed toward reliably predicting properties of materials in advance of fabrication. Thus, materials simulations are capable of complementing and guiding experimental search for novel materials.

[1]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[2]  Rajiv K. Kalia,et al.  Multiresolution algorithms for massively parallel molecular dynamics simulations of nanostructured materials , 2000 .

[3]  U. Singh,et al.  A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3Cl + Cl− exchange reaction and gas phase protonation of polyethers , 1986 .

[4]  K. Morokuma,et al.  A NEW ONIOM IMPLEMENTATION IN GAUSSIAN98. PART I. THE CALCULATION OF ENERGIES, GRADIENTS, VIBRATIONAL FREQUENCIES AND ELECTRIC FIELD DERIVATIVES , 1999 .

[5]  Rajiv K. Kalia,et al.  Variable-charge interatomic potentials for molecular-dynamics simulations of TiO2 , 1999 .

[6]  Rajiv K. Kalia,et al.  Computer-aided design of high-temperature materials , 1999 .

[7]  Frederick H. Streitz,et al.  Electrostatic potentials for metal-oxide surfaces and interfaces. , 1994 .

[8]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .

[9]  Geoffrey C. Fox,et al.  Parallel Computing Works , 1994 .

[10]  Donald W. Brenner,et al.  The Art and Science of an Analytic Potential , 2000 .

[11]  E. Kaxiras,et al.  Environment-dependent interatomic potential for bulk silicon , 1997, cond-mat/9704137.

[12]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[13]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[14]  Benedict Leimkuhler,et al.  Computational Molecular Dynamics: Challenges, Methods, Ideas , 1999, Computational Molecular Dynamics.

[15]  D Strauch,et al.  Phonon dispersion in GaAs , 1990 .

[16]  Rajiv K. Kalia,et al.  Hybrid quantum mechanical/molecular dynamics simulation on parallel computers: density functional theory on real-space multigrids , 2002 .

[17]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[18]  H. Zbib,et al.  Multiscale modelling of plastic flow localization in irradiated materials , 2000, Nature.

[19]  Maria Mitkova,et al.  Amorphous insulators and semiconductors , 1997 .

[20]  Aiichiro Nakano Multiresolution load balancing in curved space: the wavelet representation , 1999 .

[21]  Richard W. Siegel,et al.  Creating Nanophase Materials , 1996 .

[22]  Ian Foster,et al.  The Grid 2 - Blueprint for a New Computing Infrastructure, Second Edition , 1998, The Grid 2, 2nd Edition.

[23]  Timothy Campbell,et al.  A scalable molecular-dynamics algorithm suite for materials simulations: design-space diagram on 1024 Cray T3E processors , 2000, Future Gener. Comput. Syst..

[24]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[25]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[26]  Madhu Menon,et al.  NANOPLASTICITY OF SINGLE-WALL CARBON NANOTUBES UNDER UNIAXIAL COMPRESSION , 1999 .

[27]  J. Tersoff,et al.  New empirical model for the structural properties of silicon. , 1986, Physical review letters.

[28]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[29]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[30]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[31]  A. Nakano,et al.  Multiresolution molecular dynamics algorithm for realistic materials modeling on parallel computers , 1994 .

[32]  P. Vashishta,et al.  General Density Functional Theory , 1983 .

[33]  M. Karplus,et al.  A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations , 1990 .

[34]  Rajiv K. Kalia,et al.  DYNAMICS OF OXIDATION OF ALUMINUM NANOCLUSTERS USING VARIABLE CHARGE MOLECULAR-DYNAMICS SIMULATIONS ON PARALLEL COMPUTERS , 1999 .

[35]  Rajiv K. Kalia,et al.  Scalable I/O of large-scale molecular dynamics simulations: A data-compression algorithm , 2000 .

[36]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[37]  Peter S. Lomdahl,et al.  Recent advances in large-scale atomistic materials simulations , 1999, Comput. Sci. Eng..

[38]  D. Pettifor,et al.  Bounded analytic bond-order potentials for sigma and pi bonds , 2000, Physical review letters.

[39]  Michele Parrinello,et al.  From silicon to RNA: The coming of age of ab initio molecular dynamics , 1997 .

[40]  Paul Tavan,et al.  A hybrid method for solutes in complex solvents: Density functional theory combined with empirical force fields , 1999 .

[41]  H. Gleiter,et al.  Materials with ultrafine microstructures: Retrospectives and perspectives , 1992 .

[42]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[43]  Fedor N. Dzegilenko,et al.  Carbon-nanotube-based nanotechnology in an integrated modeling and simulation environment , 2000 .

[44]  Tamar Schlick,et al.  A Family of Symplectic Integrators: Stability, Accuracy, and Molecular Dynamics Applications , 1997, SIAM J. Sci. Comput..

[45]  PRIYA VASHISHTA,et al.  Large-scale atomistic simulations of dynamic fracture , 1989, Comput. Sci. Eng..

[46]  Alfredo Pasquarello,et al.  Interface structure between silicon and its oxide by first-principles molecular dynamics , 1998, Nature.

[47]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[48]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[49]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[50]  A. Nakano,et al.  Molecular Dynamics Methods and Large-Scale Simulations of Amorphous Materials , 1997 .

[51]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[52]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[53]  Rajiv K. Kalia,et al.  Scalable molecular-dynamics, visualization, and data management algorithms for materials simulations , 1989, Comput. Sci. Eng..

[54]  J. Board,et al.  Ewald summation techniques in perspective: a survey , 1996 .

[55]  Farid F. Abraham,et al.  Portrait of a crack: rapid fracture mechanics using parallel molecular dynamics , 1997 .

[56]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[57]  T Schlick,et al.  Biomolecular dynamics at long timesteps: bridging the timescale gap between simulation and experimentation. , 1997, Annual review of biophysics and biomolecular structure.

[58]  Aiichiro Nakano Fuzzy clustering approach to hierarchical molecular dynamics simulation of multiscale materials phenomena , 1997 .