Pitting and stress corrosion cracking behavior in welded austenitic stainless steel

[1]  Jingli Luo,et al.  The Influence of Hydrogen and Tensile Stress on Passivity of Type 304 Stainless Steel , 2003 .

[2]  B. M. Patchett,et al.  Stress corrosion crack initiation and propagation in longitudinally welded 304 austenitic stainless steel , 2003 .

[3]  Richard J. Chater,et al.  Why stainless steel corrodes , 2002, Nature.

[4]  R. K. Dayal,et al.  Elimination of intergranular corrosion susceptibility of cold-worked and sensitized AlSl 316 SS by laser surface melting , 2001 .

[5]  R. Fabbro,et al.  Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance , 2000 .

[6]  T. Magnin,et al.  Improvement of the resistance to stress corrosion cracking in austenitic stainless steels by cyclic prestraining , 1999 .

[7]  R. Dayal,et al.  Role of Delta-Ferrite in the Dissolution of Passive Films on the Austenitic Stainless-Steel Weld Metals , 1999 .

[8]  Takumi Haruna,et al.  The effect of potential on initiation and propagation of stress corrosion cracks for type 304l stainless steel in a chloride solution containing thiosulfate , 1997 .

[9]  Naruhiko Mukai,et al.  Residual stress improvement in metal surface by underwater laser irradiation , 1997 .

[10]  J. B. Gnanamoorthy,et al.  Effect of ferrite transformation on the tensile and stress corrosion properties of type 316 L stainless steel weld metal thermally aged at 873 K , 1995 .

[11]  Z. Fang,et al.  Stress Corrosion Cracking of Type 304 Stainless Steel Weldments in the Active State , 1994 .

[12]  K. P. Rao,et al.  Effect of chemical composition and ferrite content on room temperature SCC behavior of austenitic weld metals , 1993 .

[13]  D. Macdonald The Point Defect Model for the Passive State , 1992 .

[14]  G. Lorang,et al.  Quantitative AES depth profiling of thin oxide films grown on stainless steels and aluminium , 1992 .

[15]  K. P. Rao,et al.  Effect of microstructure on stress corrosion cracking behaviour of austenitic stainless steel weld metals , 1991 .

[16]  D. Macdonald,et al.  An electrochemical impedance analysis of passive films on nickel(111) in phosphate buffer solutions , 1990 .

[17]  M. Urquidi-Macdonald,et al.  Theory of Steady‐State Passive Films , 1990 .

[18]  J. Turner,et al.  Mott‐Schottky Plots and Flatband Potentials for Single Crystal Rutile Electrodes , 1982 .

[19]  N. Sato Anodic Breakdown of Passive Films on Metals , 1982 .

[20]  Digby D. Macdonald,et al.  A Point Defect Model for Anodic Passive Films I . Film Growth Kinetics , 1981 .

[21]  S. Morrison Electrochemistry at Semiconductor and Oxidized Metal Electrodes , 1980 .

[22]  U. Stimming,et al.  A semiconductor model of the passive layer on iron electrodes and its application to electrochemical reactions , 1979 .

[23]  R. Parkins Environment Sensitive Fracture and its Prevention , 1979 .

[24]  John H. Kennedy,et al.  Flatband Potentials and Donor Densities of Polycrystalline α ‐ Fe2 O 3 Determined from Mott‐Schottky Plots , 1978 .

[25]  K. Ogawa,et al.  Corrosion properties in weldments of stainless steels (1). Metallurgical factors affecting corrosion properties , 1999 .

[26]  Ėmmanuil Markovich Gutman,et al.  Mechanochemistry of Materials , 1998 .

[27]  Jan Storesund,et al.  Geometrical effect on creep in cross weld specimens , 1995 .

[28]  K. Sieradzki,et al.  Brittle behavior of ductile metals during stress-corrosion cracking , 1985 .

[29]  R. L. Cowan,et al.  Intergranular Corrosion of Iron-Nickel-Chromium Alloys , 1973 .