Dynamics of osmosis in a porous medium

We derive from kinetic theory, fluid mechanics and thermodynamics the minimal continuum-level equations governing the flow of a binary, non-electrolytic mixture in an isotropic porous medium with osmotic effects. For dilute mixtures, these equations are linear and in this limit provide a theoretical basis for the widely used semi-empirical relations of Kedem & Katchalsky (Kedem & Katchalsky 1958 Biochim. Biophys. Acta 27, 229–246 (doi:10.1016/0006-3002(58)90330-5), which have hitherto been validated experimentally but not theoretically. The above linearity between the fluxes and the driving forces breaks down for concentrated or non-ideal mixtures, for which our equations go beyond the Kedem–Katchalsky formulation. We show that the heretofore empirical solute permeability coefficient reflects the momentum transfer between the solute molecules that are rejected at a pore entrance and the solvent molecules entering the pore space; it can be related to the inefficiency of a Maxwellian demi-demon.

[1]  Edward A. Mason,et al.  Generalization of membrane reflection coefficients for nonideal, nonisothermal, multicomponent systems with external forces and viscous flow , 1986 .

[2]  A. Revil,et al.  Characterization of transport properties of argillaceous sediments: Application to the Callovo‐Oxfordian argillite , 2005 .

[3]  A. Katchalsky,et al.  Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. , 1958, Biochimica et biophysica acta.

[4]  I. Richardson Some remarks on the Kedem-Katchalsky equations for non-electrolytes. , 1970, The Bulletin of mathematical biophysics.

[5]  Franco Nori,et al.  Colloquium: The physics of Maxwell's demon and information , 2007, 0707.3400.

[6]  Ross Taylor,et al.  Multicomponent mass transfer , 1993 .

[7]  J. Gibbs Semi-Permeable Films and Osmotic Pressure , 1897, Nature.

[8]  O. M. Phillips,et al.  Flow and Reactions in Permeable Rocks , 1991 .

[9]  A. J. Staverman The theory of measurement of osmotic pressure , 2010 .

[10]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[11]  G. S. Manning Binary Diffusion and Bulk Flow through a Potential‐Energy Profile: A Kinetic Basis for the Thermodynamic Equations of Flow through Membranes , 1968 .

[12]  E. Charlaix,et al.  Nanofluidic osmotic diodes: theory and molecular dynamics simulations. , 2013, Physical review letters.

[13]  H. L. Dryden,et al.  Investigations on the Theory of the Brownian Movement , 1957 .

[15]  Gerhard Hummer,et al.  Osmotic water transport through carbon nanotube membranes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  H. K. Lonsdale,et al.  Statistical-mechanical theory of membrane transport , 1990 .

[17]  Uri Lachish Osmosis and thermodynamics , 2007 .

[18]  Piet J. A. M. Kerkhof,et al.  A modified Maxwell-Stefan model for transport through inert membranes : the binary friction model , 1996 .

[19]  L. Szilard On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. , 1964, Behavioral science.

[20]  A. Revil,et al.  Constitutive equations for ionic transport in porous shales , 2004 .

[21]  R. Černý,et al.  Osmosis in porous media: A review of recent studies , 2013 .

[22]  J. V. Hoff,et al.  The role of osmotic pressure in the analogy between solutions and gases , 1995 .

[23]  Molecular understanding of osmosis in semipermeable membranes. , 2006, Physical review letters.

[24]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : notes added in 1951 , 1951 .

[25]  D. Whiffen Thermodynamics , 1973, Nature.

[26]  J. Maxwell,et al.  Theory of Heat , 1892 .

[27]  P. M. Biesheuvel,et al.  Two-fluid model for the simultaneous flow of colloids and fluids in porous media. , 2011, Journal of colloid and interface science.

[28]  S. Sandler Chemical and engineering thermodynamics , 1977 .