Enhancing laccase production by white-rot fungus Funalia floccosa LPSC 232 in co-culture with Penicillium commune GHAIE86

[1]  Yingjin Yuan,et al.  Simultaneous removal of ciprofloxacin, norfloxacin, sulfamethoxazole by co-producing oxidative enzymes system of Phanerochaete chrysosporium and Pycnoporus sanguineus. , 2018, Chemosphere.

[2]  K. M. Muñoz-Páez,et al.  An ascomycota coculture in batch bioreactor is better than polycultures for cellulase production , 2018, Folia Microbiologica.

[3]  M. Cunha,et al.  Epiphytic fungal community in Vitis vinifera of the Portuguese wine regions , 2018, Letters in applied microbiology.

[4]  T. Lundell,et al.  Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes , 2017, PloS one.

[5]  R. Naraian,et al.  Decolorization of synthetic brilliant green carpet industry dye through fungal co-culture technology. , 2016, Journal of environmental management.

[6]  L. Almonacid,et al.  Effect of mixing soil saprophytic fungi with organic residues on the response of Solanum lycopersicum to arbuscular mycorrhizal fungi , 2015 .

[7]  Kedong Ma,et al.  Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi. , 2015, Bioresource technology.

[8]  L. Bohlin,et al.  Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B , 2015, Fungal Biology and Biotechnology.

[9]  R. R. Vázquez,et al.  Enhancement of ligninolytic enzyme activities in a Trametes maxima–Paecilomyces carneus co-culture: Key factors revealed after screening using a Plackett–Burman experimental design , 2014 .

[10]  M. Martínez,et al.  Coriolopsis rigida, a potential model of white-rot fungi that produce extracellular laccases , 2014, Journal of Industrial Microbiology & Biotechnology.

[11]  L. Almonacid,et al.  Influence of an organic amendment comprising saprophytic and mycorrhizal fungi on soil quality and growth of Eucalyptus globulus in the presence of sewage sludge contaminated with aluminium , 2014 .

[12]  K. Gindro,et al.  De novo production of metabolites by fungal co-culture of Trichophyton rubrum and Bionectria ochroleuca. , 2013, Journal of natural products.

[13]  F. Liu,et al.  Cyclohexanone derivatives with cytotoxicity from the fungus Penicillium commune. , 2013, Fitoterapia.

[14]  Xiao‐Ming Li,et al.  Chemical profile of the secondary metabolites produced by a deep-sea sediment-derived fungus Penicillium commune SD-118 , 2012, Chinese Journal of Oceanology and Limnology.

[15]  Sunil Kumar Singh,et al.  A biomimetic approach towards synthesis of zinc oxide nanoparticles , 2012, Applied Microbiology and Biotechnology.

[16]  C. Arriagada,et al.  Effects of the co-inoculation with saprobe and mycorrhizal fungi on Vaccinium corymbosum growth and some soil enzymatic activities , 2012 .

[17]  Nidhi Pareek,et al.  Co-cultivation of mutant Penicillium oxalicum SAU(E)-3.510 and Pleurotus ostreatus for simultaneous biosynthesis of xylanase and laccase under solid-state fermentation. , 2011, New biotechnology.

[18]  Xiao‐Ming Li,et al.  Comazaphilones A-F, azaphilone derivatives from the marine sediment-derived fungus Penicillium commune QSD-17. , 2011, Journal of natural products.

[19]  I. García-Romera,et al.  Biochemical and molecular characterization of Coriolopsis rigida laccases involved in transformation of the solid waste from olive oil production , 2010, Applied Microbiology and Biotechnology.

[20]  E. Galindo,et al.  Production of laccases by Pleurotus ostreatus in submerged fermentation in co‐culture with Trichoderma viride , 2010, Journal of applied microbiology.

[21]  M. Martínez,et al.  Transformation of the water soluble fraction from "alpeorujo" by Coriolopsis rigida: the role of laccase in the process and its impact on Azospirillum brasiliense survival. , 2010, Chemosphere.

[22]  E. Galindo,et al.  Selection of Trichoderma strains capable of increasing laccase production by Pleurotus ostreatus and Agaricus bisporus in dual cultures , 2009, Journal of applied microbiology.

[23]  J. Folch-Mallol,et al.  Production of two novel laccase isoforms by a thermotolerant strain of Pycnoporus sanguineus isolated from an oil-polluted tropical habitat. , 2008, International microbiology : the official journal of the Spanish Society for Microbiology.

[24]  P. Liang,et al.  Purification of recombinant laccase from Trametes versicolor in Pichia methanolica and its use for the decolorization of anthraquinone dye , 2008, Biotechnology Letters.

[25]  C. Decock,et al.  Autochthonous white rot fungi from the tropical forest: Potential of Cuban strains for dyes and textile industrial effluents decolourisation , 2008 .

[26]  M. Ciaffi,et al.  Response surface methodology study of laccase production in Panus tigrinus liquid cultures , 2008 .

[27]  M. Martínez,et al.  Ligninolytic enzyme ability and potential biotechnology applications of the white-rot fungus Grammothele subargentea LPSC no. 436 strain , 2008 .

[28]  P. Baldrian Wood-inhabiting ligninolytic basidiomycetes in soils: Ecology and constraints for applicability in bioremediation , 2008 .

[29]  M. Pazos,et al.  Enhanced production of laccase in Coriolopsis rigida grown on barley bran in flask or expanded-bed bioreactor , 2007 .

[30]  M. A. Sanromán,et al.  Applicability of Coriolopsis rigida for Biodegradation of Polycyclic Aromatic Hydrocarbons , 2006, Biotechnology Letters.

[31]  X. Tu,et al.  Efficient production of laccases by Trametes sp. AH28-2 in cocultivation with a Trichoderma strain , 2006, Applied Microbiology and Biotechnology.

[32]  P. Baldrian Fungal laccases - occurrence and properties. , 2006, FEMS microbiology reviews.

[33]  G. Mata,et al.  Changes in lignocellulolytic enzyme activites in six Pleurotus spp. strains cultivated on coffee pulp in confrontation with Trichoderma spp. , 2005 .

[34]  P. Baldrian Increase of laccase activity during interspecific interactions of white-rot fungi. , 2004, FEMS microbiology ecology.

[35]  M. Saparrat Optimizing Production of Extracellular Laccase from Grammothele Subargentea CLPS No. 436 Strain , 2004 .

[36]  A. Farnet,et al.  Variations of lignocellulosic activities in dual cultures of Pleurotus ostreatus and Trichoderma longibrachiatum on unsterilized wheat straw , 2004, Mycologia.

[37]  E. Aranda,et al.  Saprobic fungi decrease plant toxicity caused by olive mill residues , 2004 .

[38]  Ángel T. Martínez,et al.  Induction, Isolation, and Characterization of Two Laccases from the White Rot Basidiomycete Coriolopsis rigida , 2002, Applied and Environmental Microbiology.

[39]  S. Olsson,et al.  Induction of Laccase Activity in Rhizoctonia solani by Antagonistic Pseudomonas fluorescens Strains and a Range of Chemical Treatments , 2001, Applied and Environmental Microbiology.

[40]  G. Mata,et al.  Variability in brown line formation and extracellular laccase production during interaction between white-rot basidiomycetes and Trichoderma harzianum biotype Th2 , 2001 .

[41]  J. Stenlid,et al.  Spatiotemporal Patterns of Laccase Activity in Interacting Mycelia of Wood-Decaying Basidiomycete Fungi , 2000, Microbial Ecology.

[42]  L. Boddy,et al.  Interspecific combative interactions between wood-decaying basidiomycetes. , 2000, FEMS microbiology ecology.

[43]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[44]  F. Guillén,et al.  Induction and Characterization of Laccase in the Ligninolytic Fungus Pleurotus eryngii , 1997, Current Microbiology.

[45]  J. C. Colombo,et al.  Biodegradation of aliphatic and aromatic hydrocarbons by natural soil microflora and pure cultures of imperfect and lignolitic fungi. , 1996, Environmental pollution.

[46]  G. Griffith,et al.  Interspecific interactions and mycelial morphogenesis of Hypholoma fasciculare (Agaricaceae) , 1994 .

[47]  F. Guillén,et al.  Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. , 1992, European journal of biochemistry.

[48]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[49]  J. Pitt A laboratory guide to common Penicillium species , 1985 .

[50]  Robert A. Samson,et al.  Introduction to food-borne fungi. , 1989 .

[51]  U. L. Diener,et al.  Penitrem A and Roquefortine Production by Penicillium commune , 1980, Applied and environmental microbiology.

[52]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[53]  C. F. Niven,et al.  NUTRITION OF THE HETEROFERMENTATIVE LACTOBACILLI THAT CAUSE GREENING OF CURED MEAT PRODUCTS , 1951, Journal of bacteriology.