Chemico-genetic discovery of astrocytic control of inhibition in vivo

[1]  S. Carr,et al.  Split-TurboID enables contact-dependent proximity labeling in cells , 2020, Proceedings of the National Academy of Sciences.

[2]  B. Khakh,et al.  Improved tools to study astrocytes , 2020, Nature Reviews Neuroscience.

[3]  S. Quake,et al.  Cell-Surface Proteomic Profiling in the Fly Brain Uncovers Wiring Regulators , 2019, Cell.

[4]  C. Eroglu,et al.  Control of neural development and function by glial neuroligins , 2019, Current Opinion in Neurobiology.

[5]  A. Miyawaki,et al.  Genetically Encoded Fluorescent Indicator GRAPHIC Delineates Intercellular Connections , 2019, iScience.

[6]  E. Anton,et al.  Temporal Regulation of Dendritic Spines Through NrCAM‐Semaphorin3F Receptor Signaling in Developing Cortical Pyramidal Neurons , 2019, Cerebral cortex.

[7]  E. Soderblom,et al.  In vivo proximity proteomics of nascent synapses reveals a novel regulator of cytoskeleton-mediated synaptic maturation , 2019, Nature Communications.

[8]  T. Biederer,et al.  Mapping the Proteome of the Synaptic Cleft through Proximity Labeling Reveals New Cleft Proteins , 2018, Proteomes.

[9]  N. J. Allen,et al.  Glia as architects of central nervous system formation and function , 2018, Science.

[10]  N. Perrimon,et al.  Efficient proximity labeling in living cells and organisms with TurboID , 2018, Nature Biotechnology.

[11]  Yutaka Suzuki,et al.  Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers , 2018, Nature Communications.

[12]  Yong Ho Kim,et al.  Astrocytic Neuroligins Control Astrocyte Morphogenesis and Synaptogenesis , 2017, Nature.

[13]  K. Hahn,et al.  Discovery of long-range inhibitory signaling to ensure single axon formation , 2017, Nature Communications.

[14]  J. Béthune,et al.  Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes , 2017, Nature Communications.

[15]  V. Gradinaru,et al.  Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems , 2017, Nature Neuroscience.

[16]  P. Haydon,et al.  Astrocytic control of synaptic function , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[17]  M. Bollen,et al.  Split‐BioID: a proximity biotinylation assay for dimerization‐dependent protein interactions , 2017, FEBS letters.

[18]  Dwight E. Bergles,et al.  Neuromodulators signal through astrocytes to alter neural circuit activity and behavior , 2016, Nature.

[19]  R. Weinberg,et al.  Identification of an elaborate complex mediating postsynaptic inhibition , 2016, Science.

[20]  Mark H. Ellisman,et al.  Proteomic Analysis of Unbounded Cellular Compartments: Synaptic Clefts , 2016, Cell.

[21]  R. Tremblay,et al.  GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits , 2016, Neuron.

[22]  T. Deerinck,et al.  A split horseradish peroxidase for detection of intercellular protein-protein interactions and sensitive visualization of synapses , 2016, Nature Biotechnology.

[23]  E. Chang,et al.  Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse , 2016, Neuron.

[24]  B. Khakh,et al.  Diversity of astrocyte functions and phenotypes in neural circuits , 2015, Nature Neuroscience.

[25]  R. Nicoll,et al.  Efficient, Complete Deletion of Synaptic Proteins using CRISPR , 2014, Neuron.

[26]  T. Maniatis,et al.  An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex , 2014, The Journal of Neuroscience.

[27]  P. Manis,et al.  Neural Cell Adhesion Molecule NrCAM Regulates Semaphorin 3F-Induced Dendritic Spine Remodeling , 2014, The Journal of Neuroscience.

[28]  Steven A Sloan,et al.  Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders , 2014, Current Opinion in Neurobiology.

[29]  M. Freeman,et al.  Neuron-Glia Interactions through the Heartless FGF Receptor Signaling Pathway Mediate Morphogenesis of Drosophila Astrocytes , 2014, Neuron.

[30]  M. Fukuda,et al.  LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes , 2014, Molecular biology of the cell.

[31]  S. Oliet,et al.  Gliotransmitters Travel in Time and Space , 2014, Neuron.

[32]  J. Lacaille,et al.  Astrocytes Are Endogenous Regulators of Basal Transmission at Central Synapses , 2011, Cell.

[33]  M. Arpin,et al.  Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors , 2011, Proceedings of the National Academy of Sciences.

[34]  X. Zhuang,et al.  Superresolution Imaging of Chemical Synapses in the Brain , 2010, Neuron.

[35]  C. Eroglu,et al.  Quantifying synapses: an immunocytochemistry-based assay to quantify synapse number. , 2010, Journal of visualized experiments : JoVE.

[36]  S. Frechter,et al.  A Glial Signal Consisting of Gliomedin and NrCAM Clusters Axonal Na+ Channels during the Formation of Nodes of Ranvier , 2010, Neuron.

[37]  R. Balice-Gordon,et al.  Astrocyte secreted proteins selectively increase hippocampal GABAergic axon length, branching, and synaptogenesis , 2010, Molecular and Cellular Neuroscience.

[38]  Michael Brenner,et al.  GFAP promoter elements required for region‐specific and astrocyte‐specific expression , 2008, Glia.

[39]  P. Scheiffele,et al.  Alternative Splicing Controls Selective Trans-Synaptic Interactions of the Neuroligin-Neurexin Complex , 2006, Neuron.

[40]  R. Balice-Gordon,et al.  Astrocytes Regulate Inhibitory Synapse Formation via Trk-Mediated Modulation of Postsynaptic GABAA Receptors , 2005, The Journal of Neuroscience.

[41]  Ann Marie Craig,et al.  Neurexins Induce Differentiation of GABA and Glutamate Postsynaptic Specializations via Neuroligins , 2004, Cell.

[42]  P. Shrager,et al.  The Role of the Ankyrin-Binding Protein NrCAM in Node of Ranvier Formation , 2003, The Journal of Neuroscience.

[43]  M. Lavialle,et al.  Anatomical aspects of glia–synapse interaction: the perisynaptic glial sheath consists of a specialized astrocyte compartment , 2002, Journal of Physiology-Paris.

[44]  R. Fetter,et al.  Neuroligin Expressed in Nonneuronal Cells Triggers Presynaptic Development in Contacting Axons , 2000, Cell.

[45]  W. Wadman,et al.  Miniature inhibitory postsynaptic currents in CA1 pyramidal neurons after kindling epileptogenesis. , 1999, Journal of neurophysiology.

[46]  A. Araque,et al.  Tripartite synapses: glia, the unacknowledged partner , 1999, Trends in Neurosciences.

[47]  R. Huganir,et al.  Activity-Dependent Modulation of Synaptic AMPA Receptor Accumulation , 1998, Neuron.

[48]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[49]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[50]  G. Edelman,et al.  Homophilic and heterophilic binding activities of Nr-CAM, a nervous system cell adhesion molecule , 1992, The Journal of cell biology.

[51]  D. Duan,et al.  Recombinant adeno-associated viral vector production and purification. , 2012, Methods in molecular biology.