SNP-Schizo: A Web Tool for Schizophrenia SNP Sequence Classification

This work presents a tool which is an online implementation of the best machine learning-based model obtained after an exhaustive computational study. Twelve techniques were applied to schizophrenia data to obtain the results of this study and, with these, Quantitative Genotype - Disease Relationships (QDGRs) for disease prediction. Thus, the tool offers the possibility to introduce SNP sequences (which contain the SNPs considered in the study) in order to classify a patient. In the future, QDGR models could be extended to other diseases. The model implemented online is a linear neural network.

[1]  J J Rowland,et al.  Model selection methodology in supervised learning with evolutionary computation. , 2003, Bio Systems.

[2]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[3]  Vipin Kumar,et al.  Introduction to Data Mining , 2022, Data Mining and Machine Learning Applications.

[4]  Fred A. Wright,et al.  Genetics and population analysis Simulating association studies : a data-based resampling method for candidate regions or whole genome scans , 2007 .

[5]  L. G. Pérez-Montoto,et al.  3D entropy and moments prediction of enzyme classes and experimental-theoretic study of peptide fingerprints in Leishmania parasites. , 2009, Biochimica et biophysica acta.

[6]  Gisbert Schneider,et al.  Support vector machine applications in bioinformatics. , 2003, Applied bioinformatics.

[7]  A. Balaban,et al.  Topological Indices and Related Descriptors in QSAR and QSPR , 2003 .

[8]  Eibe Frank,et al.  Large-scale attribute selection using wrappers , 2009, 2009 IEEE Symposium on Computational Intelligence and Data Mining.

[9]  A. Barabasi,et al.  Network Theory--the Emergence of the Creative Enterprise , 2005, Science.

[10]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[11]  Cristian R. Munteanu,et al.  MIND-BEST: Web server for drugs and target discovery; design, synthesis, and assay of MAO-B inhibitors and theoretical-experimental study of G3PDH protein from Trichomonas gallinae. , 2011, Journal of proteome research.

[12]  Huan Liu,et al.  Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution , 2003, ICML.

[13]  Lourdes Santana,et al.  Proteomics, networks and connectivity indices , 2008, Proteomics.

[14]  E. Uriarte,et al.  Using spectral moments of spiral networks based on PSA/mass spectra outcomes to derive quantitative proteome-disease relationships (QPDRs) and predicting prostate cancer. , 2008, Biochemical and biophysical research communications.

[15]  C. V. D. Malsburg,et al.  Frank Rosenblatt: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms , 1986 .

[16]  Pat Langley,et al.  Estimating Continuous Distributions in Bayesian Classifiers , 1995, UAI.

[17]  S. Antonarakis,et al.  Mutation nomenclature extensions and suggestions to describe complex mutations: A discussion , 2000 .

[18]  Eibe Frank,et al.  Combining Naive Bayes and Decision Tables , 2008, FLAIRS.

[19]  J. Dorado,et al.  Trypano-PPI: a web server for prediction of unique targets in trypanosome proteome by using electrostatic parameters of protein-protein interactions. , 2010, Journal of proteome research.

[20]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[21]  M. Loza,et al.  Extensive linkage disequilibrium mapping at HTR2A and DRD3 for schizophrenia susceptibility genes in the Galician population , 2007, Schizophrenia Research.

[22]  Lourdes Santana,et al.  Medicinal chemistry and bioinformatics--current trends in drugs discovery with networks topological indices. , 2007, Current topics in medicinal chemistry.

[23]  J. Dorado,et al.  Machine Learning Techniques for Single Nucleotide Polymorphism—Disease Classification Models in Schizophrenia , 2010, Molecules.

[24]  J. Dorado,et al.  Complex network spectral moments for ATCUN motif DNA cleavage: first predictive study on proteins of human pathogen parasites. , 2009, Journal of proteome research.

[25]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[26]  Alberto Prieto,et al.  Bio-inspired systems: Computational and ambient intelligence , 2011, Neurocomputing.

[27]  Joachim Diederich,et al.  Artificial neural networks: concept learning , 1990 .

[28]  Ron Kohavi,et al.  The Power of Decision Tables , 1995, ECML.

[29]  A. Balaban,et al.  QSAR study using topological indices for inhibition of carbonic anhydrase II by sulfanilamides and Schiff bases , 2004, Molecular Diversity.

[30]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[31]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[32]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[33]  H. Cordell Detecting gene–gene interactions that underlie human diseases , 2009, Nature Reviews Genetics.

[34]  E. Eberbach Toward a theory of evolutionary computation. , 2005, Bio Systems.

[35]  Vipin Kumar,et al.  Introduction to Data Mining, (First Edition) , 2005 .

[36]  Todd Holden,et al.  A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. , 2006, Journal of theoretical biology.

[37]  Belén Melián-Batista,et al.  Solving feature subset selection problem by a Parallel Scatter Search , 2006, Eur. J. Oper. Res..

[38]  César A. Hidalgo,et al.  Scale-free networks , 2008, Scholarpedia.

[39]  Cristian R. Munteanu,et al.  Data Mining in Complex Diseases Using Evolutionary Computation , 2009, IWANN.

[40]  Huan Liu,et al.  A Probabilistic Approach to Feature Selection - A Filter Solution , 1996, ICML.

[41]  Haijia Shi Best-first Decision Tree Learning , 2007 .

[42]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[43]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[44]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.