On Energy-Optimal and Time-Optimal Precise Displacement of Rigid Body with Friction

Minimal time optimality and minimal energy optimality are usually considered as competing approaches for the trajectory planning for the precise movement of a rigid body. Theoretical and simulation results show that, with appropriate choice of constraints, these approaches are equivalent in the sense that they produce the same trajectory. This trajectory is globally optimal for both objectives. Constraints for velocity, driving force and jerk are taken into account. The model includes Coulomb and viscous friction. The optimal control solver was used as a numerical tool.

[1]  George Leitmann,et al.  The Calculus of Variations and Optimal Control , 1982 .

[2]  Kang G. Shin,et al.  Automatic generation of trajectory planners for industrial robots , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[3]  Suresh P. Sethi,et al.  A Survey of the Maximum Principles for Optimal Control Problems with State Constraints , 1995, SIAM Rev..

[4]  V. F. Krotov,et al.  New variational methods in flight dynamics , 1971 .

[5]  Yiming Zhao,et al.  Speed profile optimization for optimal path tracking , 2013, 2013 American Control Conference.

[6]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[7]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[8]  M Maarten Steinbuch,et al.  Trajectory planning and feedforward design for electromechanical motion systems , 2005 .

[9]  Ilya Ioslovich,et al.  On the energy-optimal precise wafer stage positioning: Equivalence with minimal time optimality , 2015, 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE).

[10]  I. Chen,et al.  Planning algorithms for s-curve trajectories , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[11]  A. Gasparetto,et al.  A new method for smooth trajectory planning of robot manipulators , 2007 .

[12]  M Maarten Steinbuch,et al.  MIMO feed-forward design in wafer scanners using a gradient approximation-based algorithm , 2010 .

[13]  P. Dupont,et al.  Friction Modeling for Control , 1993, 1993 American Control Conference.

[14]  Kostas J. Kyriakopoulos,et al.  Minimum jerk path generation , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[15]  Atef A. Ata,et al.  OPTIMAL TRAJECTORY PLANNING OF MANIPULATORS: A REVIEW , 2007 .

[16]  Ari Berger,et al.  Time optimal trajectory planning with feedforward and friction compensation , 2015, 2015 American Control Conference (ACC).

[17]  Elizabeth A. Croft,et al.  Jerk-bounded manipulator trajectory planning: design for real-time applications , 2003, IEEE Trans. Robotics Autom..

[18]  George Leitman,et al.  Topics in optimization , 1967 .

[19]  M. I. Zelikin,et al.  Theory of Chattering Control: with applications to Astronautics, Robotics, Economics, and Engineering , 1994 .

[20]  Micael M. Khrustalev Necessary and sufficient dynamic programming conditions for optimal control problem with state constraints , 1990 .

[21]  F. Al-Bender,et al.  Characterization of friction force dynamics , 2008, IEEE Control Systems.

[22]  Vladimir Borisov,et al.  Theory of Chattering Control , 1994 .

[23]  V. Krotov,et al.  Global methods in optimal control theory , 1993 .

[24]  Yebin Wang,et al.  A Hamiltonian approach to compute an energy efficient trajectory for a servomotor system , 2013, Autom..