A new hybrid method for optimal circuit design using semi-definite programming
暂无分享,去创建一个
Abdel-Karim S.O. Hassan | Abdel-Karim S. O. Hassan | Ahmed Abdel-Naby | A. Abdel-Naby | Ahmed Abdel-Naby
[1] Stephen P. Boyd,et al. Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[2] A. Rollett,et al. The Monte Carlo Method , 2004 .
[3] A. A. Rabie,et al. Non-derivative design centering algorithm using trust region optimization and variance reduction , 2006 .
[4] E. D. Klerk,et al. Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .
[5] Leszek J. Opalski,et al. Design centering using an approximation to the constraint region , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.
[6] Kim-Chuan Toh,et al. Primal-Dual Path-Following Algorithms for Determinant Maximization Problems With Linear Matrix Inequalities , 1999, Comput. Optim. Appl..
[7] Phillip E Allen,et al. CMOS Analog Circuit Design , 1987 .
[8] Kim-Chuan Toh,et al. On the Implementation and Usage of SDPT3 – A Matlab Software Package for Semidefinite-Quadratic-Linear Programming, Version 4.0 , 2012 .
[9] Abdel-Karim S.O. Hassan,et al. Design centering and polyhedral region approximation via parallel-cuts ellipsoidal technique , 2004 .
[10] Stephen P. Boyd,et al. Applications of semidefinite programming , 1999 .
[11] K. Singhal,et al. Statistical design centering and tolerancing using parametric sampling , 1981 .
[12] Anton van den Hengel,et al. Semidefinite Programming , 2014, Computer Vision, A Reference Guide.
[13] Helmut Graeb,et al. Analog Design Centering and Sizing , 2007 .
[14] G. Hachtel,et al. Computationally efficient yield estimation procedures based on simplicial approximation , 1978 .
[15] M. Todd. A study of search directions in primal-dual interior-point methods for semidefinite programming , 1999 .
[16] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[17] Masakazu Kojima,et al. Exploiting sparsity in primal-dual interior-point methods for semidefinite programming , 1997, Math. Program..
[18] Abdel-Karim S.O. Hassan. Normed Distances and Their Applications in Optimal Circuit Design , 2003 .
[19] Yin Zhang,et al. On Numerical Solution of the Maximum Volume Ellipsoid Problem , 2003, SIAM J. Optim..
[20] Monique Laurent,et al. Semidefinite optimization , 2019, Graphs and Geometry.
[21] Hany L. Abdel-Malek,et al. The ellipsoidal technique for design centering and region approximation , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[22] Michael L. Overton,et al. Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..
[23] Stephen J. Wright. Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.
[24] Timothy N. Trick,et al. An Extrapolated Yield Approximation Technique for Use in Yield Maximization , 1984, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
[25] Richard J. Beckman,et al. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.