Particle Swarm Optimization: An efficient method for tracing periodic orbits in 3D galactic potentials

We propose particle swarm optimization (PSO) as an alternative method for locating periodic orbits in a three-dimensional (3D) model of barred galaxies. We develop an appropriate scheme that transforms the problem of finding periodic orbits into the problem of detecting global minimizers of a function, which is defined on the Poincare surface section of the Hamiltonian system. By combining the PSO method with deflection techniques, we succeeded in tracing systematically several periodic orbits of the system. The method succeeded in tracing the initial conditions of periodic orbits in cases where Newton iterative techniques had difficulties. In particular, we found families of two- and three-dimensional periodic orbits associated with the inner 8:1 to 12:1 resonances, between the radial 4:1 and corotation resonances of our 3D Ferrers bar model. The main advantages of the proposed algorithm are its simplicity, its ability to work using function values solely, and its ability to locate many periodic orbits per run at a given Jacobian constant. Ke yw ords: methods: numerical - galaxies: kinematics and dynamics - galaxies: structure.

[1]  P. A. Patsis,et al.  On the relation between orbital structure and observed bar morphology , 2005 .

[2]  Christopher G. Langton,et al.  Artificial Life III , 2000 .

[3]  Leandro Nunes de Castro,et al.  Natural Computing , 2005, Encyclopedia of Information Science and Technology.

[4]  George Contopoulos,et al.  Order and Chaos in Dynamical Astronomy , 2002 .

[5]  John D. Hadjidemetriou,et al.  The stability of periodic orbits in the three-body problem , 1975 .

[6]  Ch. Skokos,et al.  On the stability of periodic orbits of high dimensional autonomous Hamiltonian systems , 2001 .

[7]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[8]  David B. Fogel What is evolutionary computation , 1995 .

[9]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[10]  A. Lichtenberg,et al.  Regular and Chaotic Dynamics , 1992 .

[11]  Jacek M. Zurada,et al.  Computational Intelligence: Imitating Life , 1994 .

[12]  P. A. Patsis,et al.  Orbital dynamics of three-dimensional bars – IV. Boxy isophotes in face-on views , 2003, astro-ph/0302198.

[13]  P. Magnenat,et al.  Simple three-dimensional periodic orbits in a galactic-type potential , 1985 .

[14]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[15]  P. A. Patsis,et al.  Orbital dynamics of three-dimensional bars – II. Investigation of the parameter space , 2002 .

[16]  E. Athanassoula,et al.  Orbital dynamics of three-dimensional bars — III. Boxy/peanut edge-on profiles , 2002, astro-ph/0209024.

[17]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[18]  P. A. Patsis,et al.  On the 3D dynamics and morphology of inner rings , 2003 .

[19]  Ronald J. Buta,et al.  The Catalog of Southern Ringed Galaxies , 1994 .

[20]  Michael N. Vrahatis,et al.  On the alleviation of the problem of local minima in back-propagation , 1997 .

[21]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[22]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[23]  P. A. Patsis,et al.  Orbital dynamics of three‐dimensional bars – I. The backbone of three‐dimensional bars. A fiducial case , 2002, astro-ph/0204077.

[24]  J. A. Sellwood,et al.  Dynamics of Barred Galaxies , 1993 .

[25]  E. Athanassoula,et al.  The spiral structure of galaxies , 1984 .