Body-wave interferometry using regional earthquakes with multidimensional deconvolution after wavefield decomposition at free surface

S U M M A R Y Passive seismic methods using earthquakes can be applied for extracting body waves and obtaining information of subsurface structure. In this study, we retrieve direct and reflected plane waves by applying seismic interferometry to the recorded ground motion from a cluster of regional earthquakes. We apply upgoing/downgoing P/S wavefield decomposition, time windowing, and multidimensional deconvolution to improve the quality of the extraction of reflected waves with seismic interferometry. The wavefield separation and seismic interferometry based on multidimensional deconvolution allow us to reconstruct PP, PS, SP and SS reflected waves without unwanted crosstalk between P and S waves. From earthquake data, we obtain PP, PS and SS reflected plane waves that reflect off the same reflector, and estimate Pand S-wave velocities.

[1]  Evert Slob,et al.  Seismic and electromagnetic controlled‐source interferometry in dissipative media , 2008 .

[2]  K. Wapenaar Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation. , 2004, Physical review letters.

[3]  Keiiti Aki,et al.  Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors , 1957 .

[4]  K. Wapenaar,et al.  Tutorial on seismic interferometry: Part 1 — Basic principles and applications , 2010 .

[5]  Roel Snieder,et al.  Monitoring a Building Using Deconvolution Interferometry. II: Ambient‐Vibration Analysis , 2014 .

[6]  Rodney Calvert,et al.  he virtual source method : Theory and case study , 2006 .

[7]  Hiroshi P. Sato,et al.  Interferometric seismic imaging of crustal structure using scattered teleseismic waves , 2007 .

[8]  K. Wapenaar,et al.  Global‐phase seismic interferometry unveils P‐wave reflectivity below the Himalayas and Tibet , 2012 .

[9]  Michael Behm,et al.  Blind deconvolution of multichannel recordings by linearized inversion in the spectral domain , 2014 .

[10]  A. Curtis,et al.  Wavefield separation using densely deployed three-component single-sensor groups in land surface-seismic recordings , 2002 .

[11]  Charles A. Langston,et al.  Structure under Mount Rainier, Washington, inferred from teleseismic body waves , 1979 .

[12]  Body wave observations from cross‐correlations of ambient seismic noise: A case study from the Karoo, RSA , 2011 .

[13]  Roel Snieder,et al.  Improving the virtual source method by wavefield separation , 2007 .

[14]  C. Gans Investigations of the Crust and Upper Mantle of Modern and Ancient Subduction Zones, using Pn Tomography and Seismic Receiver Functions , 2011 .

[15]  G. Zandt,et al.  Imaging the shallow crust with local and regional earthquake tomography , 2013 .

[16]  Johan O. A. Robertsson,et al.  Wavefield separation using a volume distribution of three component recordings , 1999 .

[17]  W. Abriel,et al.  Over/under towed-streamer acquisition : A method to extend seismic bandwidth to both higher and lower frequencies , 2007 .

[18]  Roel Snieder,et al.  Extracting the Building Response Using Seismic Interferometry: Theory and Application to the Millikan Library in Pasadena, California , 2006 .

[19]  M. Assumpção,et al.  Crustal thicknesses in SE Brazilian Shield by receiver function analysis: Implications for isostatic compensation , 2002 .

[20]  Roel Snieder,et al.  Equivalence of the virtual-source method and wave-field deconvolution in seismic interferometry. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Roel Snieder,et al.  Monitoring a Building Using Deconvolution Interferometry. I: Earthquake‐Data Analysis , 2013 .

[22]  Robert W. Clayton,et al.  Source shape estimation and deconvolution of teleseismic bodywaves , 1976 .

[23]  W. Yeck,et al.  Imaging basin structure with teleseismic virtual source reflection profiles , 2012 .

[24]  S. Sobolev,et al.  A detailed receiver function image of the upper mantle discontinuities in the Japan subduction zone , 2000 .

[25]  Enders A. Robinson,et al.  On unified dual fields and Einstein deconvolution , 2000 .

[26]  J. Hunziker,et al.  Seismic interferometry by crosscorrelation and by multidimensional deconvolution: a systematic comparison , 2010 .

[27]  Michael G. Bostock,et al.  Migration of scattered teleseismic body waves , 1999 .

[28]  Imaging the Shallow Crust Using Teleseismic Tomography , 2012 .

[29]  Mauricio D. Sacchi,et al.  Deconvolution of teleseismic recordings for mantle structure , 1997 .

[30]  Kees Wapenaar,et al.  Improved surface‐wave retrieval from ambient seismic noise by multi‐dimensional deconvolution , 2011 .

[31]  Kees Wapenaar,et al.  High-resolution lithospheric imaging with seismic interferometry , 2010 .

[32]  Roel Snieder,et al.  Imaging internal multiples from subsalt VSP data — Examples of target-oriented interferometry , 2008 .

[33]  Katsuhiko Shiomi,et al.  Seismic interferometry of teleseicmic S‐wave coda for retrieval of body waves: an application to the Philippine Sea slab underneath the Japanese Islands , 2009 .

[34]  J. W. M. Dankbaar,et al.  Separation of P- and S-waves , 1985 .

[35]  Nick Moldoveanu,et al.  Over/under Towed-streamer Acquisition: a Method to Extend the Seismic Bandwidth to Both, Higher and Lower Frequencies , 2006 .

[36]  N. Nakata,et al.  Shear wave imaging from traffic noise using seismic interferometry by cross-coherence , 2011 .

[37]  Roel Snieder,et al.  Interferometry by deconvolution. Part 1 -Theory for acoustic waves and numerical examples , 2008 .

[38]  K. Wapenaar,et al.  Passive seismic interferometry by multidimensional deconvolution , 2008 .

[39]  E. Slob,et al.  Controlled-source interferometric redatuming by crosscorrelation and multidimensional deconvolution in elastic media , 2011 .

[40]  R. Nowack,et al.  Deconvolution of Three-Component Teleseismic P Waves Using the Autocorrelation of the P to SV Scattered Waves , 2005 .

[41]  Michael G. Bostock,et al.  Spectral reconstruction of teleseismic P Green's functions , 2005 .

[42]  安芸 敬一 Space and time spectra of stationary stochastic waves, with special reference to microtremors , 1959 .

[43]  D. J. Verschuur,et al.  DECOMPOSITION OF MULTICOMPONENT SEISMIC DATA INTO PRIMARY P‐ AND S‐WAVE RESPONSES1 , 1990 .

[44]  Evert Slob,et al.  A Comparison of Strategies for Seismic Interferometry , 2009 .

[45]  Roel Snieder,et al.  Estimating near‐surface shear wave velocities in Japan by applying seismic interferometry to KiK‐net data , 2012 .

[46]  D. J. Verschuur,et al.  Adaptive decomposition of multicomponent ocean‐bottom seismic data into downgoing and upgoing P‐ and S‐waves , 2003 .

[47]  Roel Snieder,et al.  Interferometry by deconvolution: Part 2 — Theory for elastic waves and application to drill-bit seismic imaging , 2008 .

[48]  Joost van der Neut,et al.  Estimating and correcting the amplitude radiation pattern of a virtual source , 2009 .

[49]  N. Nakata,et al.  Shear-wave Imaging From Traffic Noise Using Seismic Interferometry By Cross-coherence , 2011 .

[50]  E. Slob,et al.  Tutorial on seismic interferometry: Part 2 — Underlying theory and new advances , 2010 .

[51]  Michael G. Bostock,et al.  Green's functions, source signatures, and the normalization of teleseismic wave fields , 2004 .

[52]  R. Snieder,et al.  Retrieval of local surface wave velocities from traffic noise – an example from the La Barge basin (Wyoming) , 2014 .

[53]  Evert Slob,et al.  Deghosting, Demultiple, and Deblurring in Controlled-Source Seismic Interferometry , 2011 .

[54]  J. Schmedes,et al.  Imaging the shallow crust with teleseismic receiver functions , 2012 .

[55]  Jon F. Claerbout,et al.  Synthesis of a layered medium from its acoustic transmission response , 1968 .