Smart windows prepared from Bombyx mori silk

We introduce a bioinspired strategy for the synthesis of green polymer electrolytes (PEs) that relies on the use of silk fibroin (SF). The two series of PEs prepared, doped with lithium bis(trifluoromethanesulfonyl)imide or lithium tetrafluoroborate and incorporating glycerol, exhibited outstanding filmogenic properties, very high transparency, and suitable adhesion to glass substrates. Despite their poor ionic conductivity, the SF-based films were employed in the construction of glass/ITO/WO3/PE/CeO2–TiO2/ITO/glass electrochromic devices displaying an optical modulation up to 5.5 % at λ=633 nm, a switching speed of about 15 s, stability up to 5160 cycles, and coloration efficiency up to −53.1 m2 C−1. This work, in which we provide the proof-of-concept, paves the way for new design approaches for silk-based materials, which would enlarge the range of applications of SF to the energy field.

[1]  D. Camacho,et al.  Polymer electrolyte system based on carrageenan-poly(3,4- ethylenedioxythiophene) (PEDOT) composite for dye sensitized solar cell , 2015 .

[2]  H. Schmidt,et al.  Development of electrochromic cells by the sol-gel process , 1998 .

[3]  E. Fortunato,et al.  Application of di-ureasil ormolytes based on lithium tetrafluoroborate in solid-state electrochromic displays , 2010 .

[4]  P. Anderson More is different. , 1972, Science.

[5]  L. Rodrigues,et al.  Structural studies of novel di-ureasil ormolytes doped with lithium hexafluoroantimonate , 2012 .

[6]  C. Lampert Smart switchable glazing for solar energy and daylight control , 1998 .

[7]  Feng Deng,et al.  Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and 13C solid-state NMR. , 2004, Biochemistry.

[8]  R. Armstrong,et al.  Aluminium and Alzheimer's disease: review of possible pathogenic mechanisms. , 1996, Dementia.

[9]  A. Kraft,et al.  Similarities between electrochromic windows and thin film batteries , 2002 .

[10]  R. Xie,et al.  Effect of Glycerol on Structure and Properties of Silk Fibroin/Pearl Powder Blend Films , 2013 .

[11]  Anne C. Dillon,et al.  Flexible electrochromic devices based on crystalline WO3 nanostructures produced with hot-wire chemical vapor deposition , 2009 .

[12]  Michel A. Aegerter,et al.  Gelatin-based protonic electrolyte for electrochromic windows , 2010 .

[13]  Goldenfeld,et al.  Simple lessons from complexity , 1999, Science.

[14]  Shenzhou Lu,et al.  Structure and properties of silk fibroin-poly(vinyl alcohol) gel. , 2002, International journal of biological macromolecules.

[15]  R. Reis,et al.  The use of ionic liquids in the processing of chitosan/silk hydrogels for biomedical applications , 2012 .

[16]  T. Lodge,et al.  Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels. , 2016, ACS applied materials & interfaces.

[17]  M. Silva,et al.  Characterization of solid polymer electrolytes based on poly(trimethylenecarbonate) and lithium tetrafluoroborate , 2004 .

[18]  G. Casalbore-Miceli,et al.  An All-Plastic and Flexible Electrochromic Device Based on Elastomeric Blends , 1998 .

[19]  D. Kaplan,et al.  Orientation of silk III at the air-water interface. , 1999, International journal of biological macromolecules.

[20]  G. Freddi,et al.  Biodegradable materials based on silk fibroin and keratin. , 2008, Biomacromolecules.

[21]  Yue Zhang,et al.  Influence of curcumin on the Al(III)-induced conformation transition of silk fibroin and resulting potential therapy for neurodegenerative diseases , 2012 .

[22]  L. Rodrigues,et al.  Vibrational analysis of d-PCL(530)/siloxane-based hybrid electrolytes doped with two lithium salts , 2013, Ionics.

[23]  David L Kaplan,et al.  Silk as a Biomaterial. , 2007, Progress in polymer science.

[24]  Sandra J. Roberts,et al.  Biocompatible Electromechanical Actuators Composed of Silk‐Conducting Polymer Composites , 2014 .

[25]  P. Gómez‐Romero,et al.  Functional Hybrid Materials: GOMEZ-R:FUNCT.HYBRID MAT. O-BK , 2005 .

[26]  David L. Kaplan,et al.  Water‐Stable Silk Films with Reduced β‐Sheet Content , 2005 .

[27]  P. Ferloni,et al.  Ionic conduction and thermal properties of poly (ethylene oxide)-lithium tetrafluoroborate films , 1988 .

[28]  Elvira Fortunato,et al.  Green Li+- and Er3+-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes for smart electrochromic windows , 2014 .

[29]  S. Mali,et al.  Langmuir–Blodgett self organized nanocrystalline tungsten oxide thin films for electrochromic performance , 2015 .

[30]  David L. Kaplan,et al.  Beating the Heat - Fast Scanning Melts Silk Beta Sheet Crystals , 2013, Scientific Reports.

[31]  J. Hwang,et al.  Flexible Organic Thin‐Film Transistors with Silk Fibroin as the Gate Dielectric , 2011, Advanced materials.

[32]  Xi Huang,et al.  Silk fibroin/glycerol blend films for controlled release , 2013 .

[33]  D. Kaplan,et al.  The influence of the hydrophilic-lipophilic environment on the structure of silk fibroin protein. , 2015, Journal of materials chemistry. B.

[34]  David L Kaplan,et al.  In vitro degradation of silk fibroin. , 2005, Biomaterials.

[35]  G. Freddi,et al.  Biodegradation of Bombyx mori silk fibroin fibers and films , 2004 .

[36]  E. Fortunato,et al.  Application of hybrid materials in solid-state electrochromic devices , 2009 .

[37]  Paul C. Painter,et al.  Hydrogen bonding in polymers: infrared temperature studies of an amorphous polyamide , 1985 .

[38]  Delia J. Milliron,et al.  Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites , 2013, Nature.

[39]  David R. Rosseinsky,et al.  Electrochromism and Electrochromic Devices , 2007 .

[40]  David L. Kaplan,et al.  Effect of water on the thermal properties of silk fibroin , 2007 .

[41]  D. Pines,et al.  The theory of everything. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[42]  S. Damrongsakkul,et al.  Development of electrospun beaded fibers from Thai silk fibroin and gelatin for controlled release application. , 2013, International journal of biological macromolecules.

[43]  G. Wallace,et al.  Toward Biodegradable Mg–Air Bioelectric Batteries Composed of Silk Fibroin–Polypyrrole Film , 2016 .

[44]  A. Pawlicka,et al.  Preparation of transparent CeO2–TiO2 coatings for electrochromic devices , 1998 .

[45]  M. Armand,et al.  Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts , 1983 .

[46]  M. Silva,et al.  Lithium-doped hybrid polymer electrolytes , 2010 .

[47]  David L. Kaplan,et al.  New Opportunities for an Ancient Material , 2010, Science.

[48]  Claes G. Granqvist,et al.  Oxide Electrochromics : Why, How, and Whither , 2008 .

[49]  P. Zhou,et al.  Effect of Al(III) and curcumin on silk fibroin conformation and aggregation morphology , 2014 .

[50]  Gangqin Xu,et al.  What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures. , 2013, Soft matter.

[51]  Qiang Yang,et al.  Silk fibroin porous scaffolds for nucleus pulposus tissue engineering. , 2014, Materials science & engineering. C, Materials for biological applications.

[52]  David K. Benson,et al.  Chromic Mechanism in Amorphous WO 3 Films , 1997 .

[53]  Jintu Fan,et al.  Intermolecular interactions between natural polysaccharides and silk fibroin protein. , 2013, Carbohydrate polymers.

[54]  Hu Tao,et al.  Silk Materials – A Road to Sustainable High Technology , 2012, Advanced materials.

[55]  David L. Kaplan,et al.  Determining Beta-Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy , 2006 .

[56]  Michel A. Aegerter,et al.  All solid-state electrochromic devices with gelatin-based electrolyte , 2008 .

[57]  Z. Shao,et al.  Effect of pH and copper(II) on the conformation transitions of silk fibroin based on EPR, NMR, and Raman spectroscopy. , 2004, Biochemistry.

[58]  Chuanbao Cao,et al.  Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. , 2015, ACS nano.

[59]  Mingzhong Li,et al.  Enzymatic degradation behavior of porous silk fibroin sheets. , 2003, Biomaterials.

[60]  Lei Jiang,et al.  Multifunctional integration: from biological to bio-inspired materials. , 2011, ACS nano.

[61]  C. Avellaneda,et al.  Electrochromism in Materials Prepared by the Sol-Gel Process , 1997 .

[62]  G. Freddi,et al.  Chemical Structure and Physical Properties of Antheraea assama Silk. , 1994 .

[63]  S. Hudson,et al.  Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. , 2005, Biomacromolecules.

[64]  C. Migliaresi,et al.  Regenerated silk fibroin films: Thermal and dynamic mechanical analysis , 2002 .

[65]  E. Fortunato,et al.  Di-Ureasil Hybrids Doped with LiBF4: Attractive Candidates as Electrolytes for “Smart Windows” , 2011, International Journal of Electrochemical Science.

[66]  Yu-Qing Zhang,et al.  Effect of regeneration of liquid silk fibroin on its structure and characterization , 2013 .

[67]  Jun Magoshi,et al.  Rheology and dynamic light scattering of silk fibroin solution extracted from the middle division of Bombyx mori silkworm. , 2002, Biomacromolecules.

[68]  Rangam Rajkhowa,et al.  Silk fibroin biomaterials for tissue regenerations. , 2013, Advanced drug delivery reviews.

[69]  P. Johansson,et al.  Spectroscopic and Theoretical Study of (CF3SO2)2N- (TFSI-) and (CF3SO2)2NH (HTFSI) , 1998 .

[70]  N. Nemoto,et al.  Dynamic light scattering of native silk fibroin solution extracted from different parts of the middle division of the silk gland of the Bombyx mori silkworm. , 2003, Biomacromolecules.

[71]  M. Jacquet,et al.  Silk fibroin: Structural implications of a remarkable amino acid sequence , 2001, Proteins.

[72]  David L. Kaplan,et al.  Dynamic Protein−Water Relationships during β-Sheet Formation , 2008 .

[73]  D. Kaplan,et al.  Materials fabrication from Bombyx mori silk fibroin , 2011, Nature Protocols.

[74]  E. Fortunato,et al.  Li(+)- and Eu(³+)-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes for electrochromic devices. , 2011, ACS applied materials & interfaces.

[75]  O. Akhavan,et al.  Influence of Coloring Voltage and Thickness on Electrochromical Properties of e-beam Evaporated WO3 Thin Films , 2006 .

[76]  F. Vicente,et al.  Voltammetric study of the stability of deposited Prussian blue films against succesive potential cycling , 1994 .

[77]  Verónica de Zea Bermudez,et al.  Bombyx mori Silk Fibers: An outstanding family of materials , 2015 .

[78]  M. Popall,et al.  Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. , 2011, Chemical Society reviews.

[79]  Feng Zhang,et al.  Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution. , 2015, ACS applied materials & interfaces.

[80]  Arild Gustavsen,et al.  Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-Art Review , 2010 .

[81]  Mingying Yang,et al.  Enhancing Effect of Glycerol on the Tensile Properties of Bombyx mori Cocoon Sericin Films , 2011, International journal of molecular sciences.

[82]  R. Yahya,et al.  Characterizations of Chitosan-Based Polymer Electrolyte Photovoltaic Cells , 2010 .

[83]  M. Furlani,et al.  Spectroscopic studies of luminescent and ionically conducting Eu[N(CF3SO2)2]3-PPG4000 complexes , 1998 .

[84]  Clément Sanchez,et al.  Biomimetism and bioinspiration as tools for the design of innovative materials and systems , 2005, Nature materials.

[85]  G. Swiegers Bioinspiration and biomimicry in chemistry : reverse-engineering nature , 2012 .

[86]  Philippe Belleville,et al.  Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer , 2006, Nature materials.

[87]  Agnieszka Pawlicka,et al.  Influence of plasticizer type on the properties of polymer electrolytes based on chitosan. , 2008, The journal of physical chemistry. A.

[88]  Jintu Fan,et al.  Physical properties of silk fibroin/cellulose blend films regenerated from the hydrophilic ionic liquid , 2011 .

[89]  D. Kaplan,et al.  Insoluble and flexible silk films containing glycerol. , 2010, Biomacromolecules.

[90]  P. Barbosa,et al.  Cationic and anionic environments in LiTFSI-doped di-ureasils with application in solid-state electrochromic devices , 2008 .

[91]  Jenq-Neng Hwang,et al.  Multicolored Electrochromism in Polymers: Structures and Devices , 2004 .

[92]  Z. Shao,et al.  Effect of metallic ions on silk formation in the Mulberry silkworm, Bombyx mori. , 2005, The journal of physical chemistry. B.

[93]  D. Kaplan,et al.  Degradation mechanism and control of silk fibroin. , 2011, Biomacromolecules.

[94]  David L Kaplan,et al.  Silk-based biomaterials. , 2003, Biomaterials.

[95]  David L. Kaplan,et al.  Nano‐ and Micropatterning of Optically Transparent, Mechanically Robust, Biocompatible Silk Fibroin Films , 2008 .

[96]  D. Murphy,et al.  Phase relationships and conductivity of the polymer electrolytes poly(ethylene oxide)/lithium tetrafluoroborate and poly(ethylene oxide)/lithium trifluoromethanesulfonate , 1988 .

[97]  M. Furlani,et al.  Time resolved luminescence and vibrational spectroscopic studies on complexes of poly(ethylene oxide) oligomers and EuTFSI3 salt , 1998 .

[98]  Jing Zhao,et al.  Biomimetic and bioinspired membranes: Preparation and application , 2014 .

[99]  D. Kaplan,et al.  Flexibility regeneration of silk fibroin in vitro. , 2012, Biomacromolecules.

[100]  J. Goh,et al.  In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. , 2008, Biomaterials.

[101]  David L. Kaplan,et al.  A new route for silk , 2008 .

[102]  A. Lode,et al.  Fabrication and characterization of regenerated silk scaffolds reinforced with natural silk fibers for bone tissue engineering. , 2013, Journal of biomedical materials research. Part A.

[103]  Nicolas Goujon,et al.  Regenerated silk fibroin using protic ionic liquids solvents: towards an all-ionic-liquid process for producing silk with tunable properties. , 2012, Chemical communications.