Online Scheduling Revisited

We present a newon line algorithm, MR, for nonpreemptive scheduling of jobs with known processing times on m identical machines which beats the best previous algorithm for m ≥ 64. For m → ∞ its competitive ratio approaches 1 + √1+ln2/2 < 1.9201.

[1]  Jirí Sgall A Lower Bound for Randomized On-Line Multiprocessor Scheduling , 1997, Inf. Process. Lett..

[2]  Steven S. Seiden Randomized Algorithms for that Ancient Scheduling Problem , 1997, WADS.

[3]  Gerhard J. Woeginger,et al.  An optimal algorithm for preemptive on-line scheduling , 1995, Oper. Res. Lett..

[4]  Amos Fiat,et al.  New algorithms for an ancient scheduling problem , 1992, STOC '92.

[5]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[6]  Gerhard J. Woeginger,et al.  A Lower Bound for Randomized On-Line Scheduling Algorithms , 1994, Information Processing Letters.

[7]  Gerhard J. Woeginger,et al.  New lower and upper bounds for on-line scheduling , 1994, Oper. Res. Lett..

[8]  Eric Torng,et al.  Generating adversaries for request-answer games , 2000, SODA '00.

[9]  Ramaswamy Chandrasekaran,et al.  A Note on "An On-Line Scheduling Heuristic with Better Worst Case Ratio than Graham's List Scheduling" , 1997, SIAM J. Comput..

[10]  Susanne Albers,et al.  Better bounds for online scheduling , 1997, STOC '97.

[11]  Gerhard J. Woeginger,et al.  An On-Line Scheduling Heuristic With Better Worst Case Ratio Than Graham's List Scheduling , 1993, SIAM J. Comput..

[12]  György Turán,et al.  On the performance of on-line algorithms for partition problems , 1989, Acta Cybern..

[13]  Amos Fiat,et al.  New algorithms for an ancient scheduling problem , 1992, STOC '92.

[14]  Yuval Rabani,et al.  A Better Lower Bound for On-Line Scheduling , 1994, Inf. Process. Lett..

[15]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[16]  David R. Karger,et al.  A better algorithm for an ancient scheduling problem , 1994, SODA '94.

[17]  Gerhard J. Woeginger,et al.  Developments from a June 1996 seminar on Online algorithms: the state of the art , 1998 .

[18]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[19]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .