Causal Discovery Toolbox: Uncover causal relationships in Python

This paper presents a new open source Python framework for causal discovery from observational data and domain background knowledge, aimed at causal graph and causal mechanism modeling. The 'cdt' package implements the end-to-end approach, recovering the direct dependencies (the skeleton of the causal graph) and the causal relationships between variables. It includes algorithms from the 'Bnlearn' and 'Pcalg' packages, together with algorithms for pairwise causal discovery such as ANM. 'cdt' is available under the MIT License at this https URL.

[1]  Muriel Médard,et al.  Network deconvolution as a general method to distinguish direct dependencies in networks , 2013, Nature Biotechnology.

[2]  K. Sachs,et al.  Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data , 2005, Science.

[3]  David Lopez-Paz,et al.  Structural Agnostic Modeling: Adversarial Learning of Causal Graphs , 2018, 1803.04929.

[4]  José A. R. Fonollosa Conditional distribution variability measures for causality detection , 2016, Cause Effect Pairs in Machine Learning.

[5]  Michèle Sebag,et al.  Learning Functional Causal Models with Generative Neural Networks , 2018 .

[6]  Eric V. Strobl,et al.  Approximate Kernel-Based Conditional Independence Tests for Fast Non-Parametric Causal Discovery , 2017, Journal of Causal Inference.

[7]  Peter Bühlmann,et al.  CAM: Causal Additive Models, high-dimensional order search and penalized regression , 2013, ArXiv.

[8]  Bernhard Schölkopf,et al.  Nonlinear causal discovery with additive noise models , 2008, NIPS.

[9]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[10]  Bernhard Schölkopf,et al.  Towards a Learning Theory of Causation , 2015, 1502.02398.

[11]  David Maxwell Chickering,et al.  Optimal Structure Identification With Greedy Search , 2002, J. Mach. Learn. Res..

[12]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[13]  James Bailey,et al.  Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance , 2010, J. Mach. Learn. Res..

[14]  David Lopez-Paz,et al.  SAM: Structural Agnostic Model, Causal Discovery and Penalized Adversarial Learning , 2018 .

[15]  Tom Burr,et al.  Causation, Prediction, and Search , 2003, Technometrics.

[16]  Isabelle Guyon,et al.  Privacy Preserving Synthetic Health Data , 2019, ESANN.

[17]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[18]  Constantin F. Aliferis,et al.  Algorithms for Large Scale Markov Blanket Discovery , 2003, FLAIRS.