Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters.

The high spectral resolution lidar (HSRL) instrument described in this paper utilizes the fundamental and second-harmonic output from an injection seeded Nd:YAG laser as the laser transmitter. The light scattered in the atmosphere is collected using a commercial Schmidt-Cassegrain telescope with the optical receiver train first splitting the fundamental and second-harmonic return signal with the fundament light monitored using an avalanche photodiode. The second-harmonic return signal is mode matched into a tunable confocal Fabry-Perot (CFP) interferometer with a free spectral range of 7.5 GHz and a finesse of 50.7 (312) at 532 nm (1064 nm) placed in the optical receiver for spectrally filtering the molecular and aerosol return signals. The light transmitted through the CFP is used to monitor the aerosol return signal while the light reflected from the CFP is used to monitor the molecular return signal. Data collected with the HSRL are presented and inversion results are compared to a co-located solar radiometer, demonstrating the successful operation of the instrument. The CFP-based filtering technique successfully employed by this HSRL instrument is easily portable to other arbitrary wavelengths, thus allowing for the future development of multiwavelength HSRL instruments.

[1]  O. Dubovik,et al.  Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations , 2005 .

[2]  Benjamin M. Herman,et al.  Determination of aerosol height distributions by lidar , 1972 .

[3]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[4]  M. Chin,et al.  A review of measurement-based assessments of the aerosol direct radiative effect and forcing , 2005 .

[5]  Amin R. Nehrir,et al.  Development of an eye-safe diode-laser-based micro-pulse differential absorption lidar (mp-DIAL) for atmospheric water-vapor and aerosol studies , 2011 .

[6]  A confocal Fabry-Perot interferometer for use in LIDAR receivers , 2009 .

[7]  L. M. Caldwell,et al.  High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles. , 1992, Optics letters.

[8]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[9]  L. M. Caldwell,et al.  High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles. , 2001, Applied optics.

[10]  David S. Hoffman,et al.  Observational studies of atmospheric aerosols over Bozeman, Montana, using a two-color lidar, a water vapor DIAL, a solar radiometer, and a ground-based nephelometer over a 24-h period , 2011 .

[11]  Wayne C. Welch,et al.  Airborne high spectral resolution lidar for profiling aerosol optical properties. , 2008, Applied optics.

[12]  Yoshihiro Takegoshi,et al.  Ultraviolet High-Spectral-Resolution Lidar with Fabry-Perot Filter for Accurate Measurement of Extinction and Lidar Ratio , 2005 .

[13]  E. Eloranta,et al.  Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter. , 1994, Optics letters.

[14]  Piers M. Forster,et al.  The effect of human activity on radiative forcing of climate change: a review of recent developments , 1999 .

[15]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[16]  Gerhard Ehret,et al.  Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients. , 2008, Applied optics.

[17]  X. Wang,et al.  Spaceborne lidar calibration from cirrus and molecular backscatter returns , 2002, IEEE Trans. Geosci. Remote. Sens..

[18]  E. Eloranta,et al.  High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: calibration and data analysis. , 1983, Applied optics.

[19]  J. Klett Stable analytical inversion solution for processing lidar returns. , 1981, Applied optics.

[20]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[21]  A. G. Fox,et al.  Resonant modes in a maser interferometer , 1961 .

[22]  L. Mandel,et al.  Absorption and Emission of Evanescent Photons , 1972 .

[23]  S. A. Lee,et al.  High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters. , 1983, Applied optics.

[24]  O. Boucher,et al.  Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review , 2000 .

[25]  Maria Cristina Facchini,et al.  The effect of physical and chemical aerosol properties on warm cloud droplet activation , 2005 .

[26]  J. Gordon,et al.  Confocal multimode resonator for millimeter through optical wavelength masers , 1961 .

[27]  F. G. Fernald Analysis of atmospheric lidar observations: some comments. , 1984, Applied optics.

[28]  Dengxin Hua,et al.  Ultraviolet high-spectral-resolution Rayleigh-Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere. , 2004, Optics letters.

[29]  Zhaoyan Liu,et al.  High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements , 1999 .

[30]  J. Reagan,et al.  Optical characterization of continental and biomass‐burning aerosols over Bozeman, Montana: A case study of the aerosol direct effect , 2011 .

[31]  E. Eloranta,et al.  University of Wisconsin High Spectral Resolution Lidar , 1991 .

[32]  J. Johnson A high resolution scanning confocal interferometer. , 1968, Applied optics.

[33]  Nobuo Sugimoto,et al.  Development of a dual-wavelength high-spectral-resolution lidar , 2010, Asia-Pacific Remote Sensing.

[34]  E. Eloranta,et al.  High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: theory and instrumentation. , 1983, Applied optics.

[35]  K. Repasky,et al.  High-finesse interferometers. , 1995, Applied optics.

[36]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[37]  M. Hercher,et al.  The spherical mirror fabry-perot interferometer. , 1968, Applied optics.

[38]  G. A. Gary,et al.  Solar Confocal Interferometers for Sub-Picometer-Resolution Spectral Filters , 2007 .

[39]  Zhaoyan Liu,et al.  Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar. , 2002, Applied optics.

[40]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[41]  Takao Kobayashi,et al.  Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties. , 2005, Applied optics.