Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters.
暂无分享,去创建一个
David S. Hoffman | John A Reagan | Kevin S Repasky | J. Reagan | K. Repasky | J. Carlsten | David S Hoffman | John L Carlsten
[1] O. Dubovik,et al. Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations , 2005 .
[2] Benjamin M. Herman,et al. Determination of aerosol height distributions by lidar , 1972 .
[3] T. Eck,et al. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .
[4] M. Chin,et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing , 2005 .
[5] Amin R. Nehrir,et al. Development of an eye-safe diode-laser-based micro-pulse differential absorption lidar (mp-DIAL) for atmospheric water-vapor and aerosol studies , 2011 .
[6] A confocal Fabry-Perot interferometer for use in LIDAR receivers , 2009 .
[7] L. M. Caldwell,et al. High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles. , 1992, Optics letters.
[8] Corinne Le Quéré,et al. Climate Change 2013: The Physical Science Basis , 2013 .
[9] L. M. Caldwell,et al. High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles. , 2001, Applied optics.
[10] David S. Hoffman,et al. Observational studies of atmospheric aerosols over Bozeman, Montana, using a two-color lidar, a water vapor DIAL, a solar radiometer, and a ground-based nephelometer over a 24-h period , 2011 .
[11] Wayne C. Welch,et al. Airborne high spectral resolution lidar for profiling aerosol optical properties. , 2008, Applied optics.
[12] Yoshihiro Takegoshi,et al. Ultraviolet High-Spectral-Resolution Lidar with Fabry-Perot Filter for Accurate Measurement of Extinction and Lidar Ratio , 2005 .
[13] E. Eloranta,et al. Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter. , 1994, Optics letters.
[14] Piers M. Forster,et al. The effect of human activity on radiative forcing of climate change: a review of recent developments , 1999 .
[15] R. Betts,et al. Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .
[16] Gerhard Ehret,et al. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients. , 2008, Applied optics.
[17] X. Wang,et al. Spaceborne lidar calibration from cirrus and molecular backscatter returns , 2002, IEEE Trans. Geosci. Remote. Sens..
[18] E. Eloranta,et al. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: calibration and data analysis. , 1983, Applied optics.
[19] J. Klett. Stable analytical inversion solution for processing lidar returns. , 1981, Applied optics.
[20] U. Lohmann,et al. Global indirect aerosol effects: a review , 2004 .
[21] A. G. Fox,et al. Resonant modes in a maser interferometer , 1961 .
[22] L. Mandel,et al. Absorption and Emission of Evanescent Photons , 1972 .
[23] S. A. Lee,et al. High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters. , 1983, Applied optics.
[24] O. Boucher,et al. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review , 2000 .
[25] Maria Cristina Facchini,et al. The effect of physical and chemical aerosol properties on warm cloud droplet activation , 2005 .
[26] J. Gordon,et al. Confocal multimode resonator for millimeter through optical wavelength masers , 1961 .
[27] F. G. Fernald. Analysis of atmospheric lidar observations: some comments. , 1984, Applied optics.
[28] Dengxin Hua,et al. Ultraviolet high-spectral-resolution Rayleigh-Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere. , 2004, Optics letters.
[29] Zhaoyan Liu,et al. High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements , 1999 .
[30] J. Reagan,et al. Optical characterization of continental and biomass‐burning aerosols over Bozeman, Montana: A case study of the aerosol direct effect , 2011 .
[31] E. Eloranta,et al. University of Wisconsin High Spectral Resolution Lidar , 1991 .
[32] J. Johnson. A high resolution scanning confocal interferometer. , 1968, Applied optics.
[33] Nobuo Sugimoto,et al. Development of a dual-wavelength high-spectral-resolution lidar , 2010, Asia-Pacific Remote Sensing.
[34] E. Eloranta,et al. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: theory and instrumentation. , 1983, Applied optics.
[35] K. Repasky,et al. High-finesse interferometers. , 1995, Applied optics.
[36] S. Twomey. The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .
[37] M. Hercher,et al. The spherical mirror fabry-perot interferometer. , 1968, Applied optics.
[38] G. A. Gary,et al. Solar Confocal Interferometers for Sub-Picometer-Resolution Spectral Filters , 2007 .
[39] Zhaoyan Liu,et al. Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar. , 2002, Applied optics.
[40] J. Houghton,et al. Climate change 2001 : the scientific basis , 2001 .
[41] Takao Kobayashi,et al. Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties. , 2005, Applied optics.