Global optimization for first order Markov Random Fields with submodular priors
暂无分享,去创建一个
[1] Olga Veksler. Graph Cut Based Optimization for MRFs with Truncated Convex Priors , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.
[2] J. Besag. On the Statistical Analysis of Dirty Pictures , 1986 .
[3] H. D. Ratliff,et al. Minimum cuts and related problems , 1975, Networks.
[4] Andrew Blake,et al. LogCut - Efficient Graph Cut Optimization for Markov Random Fields , 2007, 2007 IEEE 11th International Conference on Computer Vision.
[5] Mila Nikolova,et al. Analysis of the Recovery of Edges in Images and Signals by Minimizing Nonconvex Regularized Least-Squares , 2005, Multiscale Model. Simul..
[6] László Lovász,et al. Submodular functions and convexity , 1982, ISMP.
[7] F. Barahona. Finding ground states in random-field Ising ferromagnets , 1985 .
[8] Gerhard Winkler,et al. Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.
[9] Anil K. Jain,et al. Markov random fields : theory and application , 1993 .
[10] Dorit S. Hochbaum,et al. Solving the Convex Cost Integer Dual Network Flow Problem , 2003, Manag. Sci..
[11] Daniel Freedman,et al. Energy minimization via graph cuts: settling what is possible , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[12] George B. Dantzig,et al. Linear programming and extensions , 1965 .
[13] F. Guichard,et al. Mathematical Morphology " Almost Everywhere " , 2002 .
[14] Jérôme Darbon. Composants logiciels et algorithmes de minimisation exacte d'énergies dédiées au traitement des images , 2005 .
[15] Martin J. Wainwright,et al. MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.
[16] Jérôme Darbon,et al. The use of levelable regularization functions for MRF restoration of SAR images while preserving reflectivity , 2007, Electronic Imaging.
[17] B. Zalesky. Network flow optimization for restoration of images , 2001 .
[18] Tony F. Chan,et al. Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..
[19] Wotao Yin,et al. Parametric Maximum Flow Algorithms for Fast Total Variation Minimization , 2009, SIAM J. Sci. Comput..
[20] Laurent D. Cohen,et al. Global Minimum for Active Contour Models: A Minimal Path Approach , 1997, International Journal of Computer Vision.
[21] Jérôme Darbon,et al. Image Restoration with Discrete Constrained Total Variation Part II: Levelable Functions, Convex Priors and Non-Convex Cases , 2006, Journal of Mathematical Imaging and Vision.
[22] Olga Veksler,et al. Graph cut with ordering constraints on labels and its applications , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.
[23] Jérôme Darbon. Global Optimization for First Order Markov Random Fields with Submodular Priors , 2008, IWCIA.
[24] Marie-Pierre Jolly,et al. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.
[25] M. Nikolova,et al. Stability of the Minimizers of Least Squares with a Non-Convex Regularization. Part I: Local Behavior , 2006 .
[26] Georgy L. Gimel'farb,et al. Image Textures and Gibbs Random Fields , 1999, Computational Imaging and Vision.
[27] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[28] G. B. Smith,et al. Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .
[29] Hiroshi Ishikawa,et al. Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[30] Gareth Funka-Lea,et al. Graph Cuts and Efficient N-D Image Segmentation , 2006, International Journal of Computer Vision.
[31] Gerhard Winkler,et al. Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction , 2002 .
[32] J. George Shanthikumar,et al. Convex separable optimization is not much harder than linear optimization , 1990, JACM.
[33] Paolo Carnevali,et al. Image Processing by Simulated Annealing , 1985, IBM J. Res. Dev..
[34] Alexander Schrijver,et al. A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.
[35] José M. Bioucas-Dias,et al. Phase Unwrapping via Graph Cuts , 2007, IEEE Trans. Image Process..
[36] M. Nikolova. Model distortions in Bayesian MAP reconstruction , 2007 .
[37] Satoru Iwata,et al. A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.
[38] Thomas L. Magnanti,et al. A Comparison of Mixed - Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems , 2003, Manag. Sci..
[39] P. Carnevali,et al. Image processing by stimulated annealing , 1985 .
[40] B. Zalesky. Efficient Determination of Gibbs Estimators with Submodular Energy Functions , 2003, math/0304041.
[41] M. Nikolova,et al. Stability of the Minimizers of Least Squares with a Non-Convex Regularization. Part II: Global Behavior , 2006 .
[42] David K. Smith. Network Flows: Theory, Algorithms, and Applications , 1994 .
[43] Jérôme Darbon,et al. SAR Image Regularization With Fast Approximate Discrete Minimization , 2009, IEEE Transactions on Image Processing.
[44] Mila Nikolova,et al. Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..
[45] Dieter Jungnickel,et al. Graphs, Networks, and Algorithms , 1980 .
[46] Jérôme Darbon,et al. A Vectorial Self-dual Morphological Filter Based on Total Variation Minimization , 2005, ISVC.
[47] Olga Veksler. Multi-label Moves for MRFs with Truncated Convex Priors , 2009, EMMCVPR.
[48] D. Schlesinger,et al. TRANSFORMING AN ARBITRARY MINSUM PROBLEM INTO A BINARY ONE , 2006 .
[49] Vladimir Kolmogorov,et al. An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision , 2004, IEEE Trans. Pattern Anal. Mach. Intell..
[50] Olga Veksler,et al. Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..
[51] D. Greig,et al. Exact Maximum A Posteriori Estimation for Binary Images , 1989 .
[52] Martin J. Wainwright,et al. On the Optimality of Tree-reweighted Max-product Message-passing , 2005, UAI.
[53] Dorit S. Hochbaum,et al. An efficient algorithm for image segmentation, Markov random fields and related problems , 2001, JACM.
[54] Petros Maragos,et al. Threshold Superposition in Morphological Image Analysis Systems , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[55] Ramesh C. Jain,et al. Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[56] Donald Geman,et al. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .
[57] Kazuo Murota,et al. Quasi M-convex and L-convex functions--quasiconvexity in discrete optimization , 2003, Discret. Appl. Math..
[58] V. Kolmogorov. Primal-dual Algorithm for Convex Markov Random Fields , 2005 .
[59] Dorit S. Hochbaum,et al. A Cut-Based Algorithm for the Nonlinear Dual of the Minimum Cost Network Flow Problem , 2004, Algorithmica.
[60] Antonin Chambolle,et al. Total Variation Minimization and a Class of Binary MRF Models , 2005, EMMCVPR.
[61] Stan Z. Li,et al. Markov Random Field Modeling in Image Analysis , 2001, Computer Science Workbench.
[62] Andrew Blake,et al. Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.
[63] Antonin Chambolle,et al. On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows , 2009, International Journal of Computer Vision.
[64] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[65] Jérôme Darbon,et al. Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization , 2006, Journal of Mathematical Imaging and Vision.
[66] Ogielski. Integer optimization and zero-temperature fixed point in Ising random-field systems. , 1986, Physical review letters.
[67] Alexander K. Hartmann,et al. Exact determination of all ground states of random field systems in polynomial time , 1995 .