Global optimization for first order Markov Random Fields with submodular priors

This paper copes with the global optimization of Markovian energies. Energies are defined on an arbitrary graph and pairwise interactions are considered. The label set is assumed to be linearly ordered and of finite cardinality, while each interaction term (prior) shall be a submodular function. We propose an algorithm that computes a global optimizer under these assumptions. The approach consists of mapping the original problem into a combinatorial one that is shown to be globally solvable using a maximum-flow/s-t minimum-cut algorithm. This restatement relies on considering the level sets of the labels (seen as binary variables) instead of the label values themselves. The submodularity assumption of the priors is shown to be a necessary and sufficient condition for the applicability of the proposed approach. Finally, some numerical results are presented.

[1]  Olga Veksler Graph Cut Based Optimization for MRFs with Truncated Convex Priors , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[3]  H. D. Ratliff,et al.  Minimum cuts and related problems , 1975, Networks.

[4]  Andrew Blake,et al.  LogCut - Efficient Graph Cut Optimization for Markov Random Fields , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[5]  Mila Nikolova,et al.  Analysis of the Recovery of Edges in Images and Signals by Minimizing Nonconvex Regularized Least-Squares , 2005, Multiscale Model. Simul..

[6]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[7]  F. Barahona Finding ground states in random-field Ising ferromagnets , 1985 .

[8]  Gerhard Winkler,et al.  Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.

[9]  Anil K. Jain,et al.  Markov random fields : theory and application , 1993 .

[10]  Dorit S. Hochbaum,et al.  Solving the Convex Cost Integer Dual Network Flow Problem , 2003, Manag. Sci..

[11]  Daniel Freedman,et al.  Energy minimization via graph cuts: settling what is possible , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[13]  F. Guichard,et al.  Mathematical Morphology " Almost Everywhere " , 2002 .

[14]  Jérôme Darbon Composants logiciels et algorithmes de minimisation exacte d'énergies dédiées au traitement des images , 2005 .

[15]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[16]  Jérôme Darbon,et al.  The use of levelable regularization functions for MRF restoration of SAR images while preserving reflectivity , 2007, Electronic Imaging.

[17]  B. Zalesky Network flow optimization for restoration of images , 2001 .

[18]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[19]  Wotao Yin,et al.  Parametric Maximum Flow Algorithms for Fast Total Variation Minimization , 2009, SIAM J. Sci. Comput..

[20]  Laurent D. Cohen,et al.  Global Minimum for Active Contour Models: A Minimal Path Approach , 1997, International Journal of Computer Vision.

[21]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part II: Levelable Functions, Convex Priors and Non-Convex Cases , 2006, Journal of Mathematical Imaging and Vision.

[22]  Olga Veksler,et al.  Graph cut with ordering constraints on labels and its applications , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Jérôme Darbon Global Optimization for First Order Markov Random Fields with Submodular Priors , 2008, IWCIA.

[24]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[25]  M. Nikolova,et al.  Stability of the Minimizers of Least Squares with a Non-Convex Regularization. Part I: Local Behavior , 2006 .

[26]  Georgy L. Gimel'farb,et al.  Image Textures and Gibbs Random Fields , 1999, Computational Imaging and Vision.

[27]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[28]  G. B. Smith,et al.  Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .

[29]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Gareth Funka-Lea,et al.  Graph Cuts and Efficient N-D Image Segmentation , 2006, International Journal of Computer Vision.

[31]  Gerhard Winkler,et al.  Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction , 2002 .

[32]  J. George Shanthikumar,et al.  Convex separable optimization is not much harder than linear optimization , 1990, JACM.

[33]  Paolo Carnevali,et al.  Image Processing by Simulated Annealing , 1985, IBM J. Res. Dev..

[34]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[35]  José M. Bioucas-Dias,et al.  Phase Unwrapping via Graph Cuts , 2007, IEEE Trans. Image Process..

[36]  M. Nikolova Model distortions in Bayesian MAP reconstruction , 2007 .

[37]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[38]  Thomas L. Magnanti,et al.  A Comparison of Mixed - Integer Programming Models for Nonconvex Piecewise Linear Cost Minimization Problems , 2003, Manag. Sci..

[39]  P. Carnevali,et al.  Image processing by stimulated annealing , 1985 .

[40]  B. Zalesky Efficient Determination of Gibbs Estimators with Submodular Energy Functions , 2003, math/0304041.

[41]  M. Nikolova,et al.  Stability of the Minimizers of Least Squares with a Non-Convex Regularization. Part II: Global Behavior , 2006 .

[42]  David K. Smith Network Flows: Theory, Algorithms, and Applications , 1994 .

[43]  Jérôme Darbon,et al.  SAR Image Regularization With Fast Approximate Discrete Minimization , 2009, IEEE Transactions on Image Processing.

[44]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[45]  Dieter Jungnickel,et al.  Graphs, Networks, and Algorithms , 1980 .

[46]  Jérôme Darbon,et al.  A Vectorial Self-dual Morphological Filter Based on Total Variation Minimization , 2005, ISVC.

[47]  Olga Veksler Multi-label Moves for MRFs with Truncated Convex Priors , 2009, EMMCVPR.

[48]  D. Schlesinger,et al.  TRANSFORMING AN ARBITRARY MINSUM PROBLEM INTO A BINARY ONE , 2006 .

[49]  Vladimir Kolmogorov,et al.  An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[52]  Martin J. Wainwright,et al.  On the Optimality of Tree-reweighted Max-product Message-passing , 2005, UAI.

[53]  Dorit S. Hochbaum,et al.  An efficient algorithm for image segmentation, Markov random fields and related problems , 2001, JACM.

[54]  Petros Maragos,et al.  Threshold Superposition in Morphological Image Analysis Systems , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[57]  Kazuo Murota,et al.  Quasi M-convex and L-convex functions--quasiconvexity in discrete optimization , 2003, Discret. Appl. Math..

[58]  V. Kolmogorov Primal-dual Algorithm for Convex Markov Random Fields , 2005 .

[59]  Dorit S. Hochbaum,et al.  A Cut-Based Algorithm for the Nonlinear Dual of the Minimum Cost Network Flow Problem , 2004, Algorithmica.

[60]  Antonin Chambolle,et al.  Total Variation Minimization and a Class of Binary MRF Models , 2005, EMMCVPR.

[61]  Stan Z. Li,et al.  Markov Random Field Modeling in Image Analysis , 2001, Computer Science Workbench.

[62]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[63]  Antonin Chambolle,et al.  On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows , 2009, International Journal of Computer Vision.

[64]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[65]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization , 2006, Journal of Mathematical Imaging and Vision.

[66]  Ogielski Integer optimization and zero-temperature fixed point in Ising random-field systems. , 1986, Physical review letters.

[67]  Alexander K. Hartmann,et al.  Exact determination of all ground states of random field systems in polynomial time , 1995 .