The proof and measurement of association between two things.

All knowledge—beyond that of bare isolated occurrence—deals with uniformities. Of the latter, some few have a claim to be considered absolute, such as mathematical implications and mechanical laws. But the vast majority are only partial; medicine does not teach that smallpox is inevitably escaped by vaccination, but that it is so generally; biology has not shown that all animals require organic food, but that nearly all do so; in daily life, a dark sky is no proof that it will rain, but merely a warning; even in morality, the sole categorical imperative alleged by Kant was the sinfulness of telling a lie, and few thinkers since have admitted so much as this to be valid universally. In psychology, more perhaps than in any other science, it is hard to find absolutely inflexible coincidences; occasionally, indeed, there appear uniformities sufficiently regular to be practically treated as laws, but infinitely the greater part of the observations hitherto recorded concern only more or less pronounced tendencies of one event or attribute to accompany another. Under these circumstances, one might well have expected that the evidential evaluation and precise mensuration of tendencies had long been the subject of exhaustive investigation and now formed one of the earliest sections in a beginner’s psychological course. Instead, we find only a general naı̈ve ignorance that there is anything about it requiring to be learnt. One after another, laborious series of experiments are executed and published with the purpose of demonstrating some connection between two events, wherein the otherwise learned psychologist reveals that his art of proving and measuring correspondence has not advanced beyond that of lay persons. The consequence has been that the significance of the experiments is not at all rightly understood, nor have any definite facts been elicited that may be either confirmed or refuted. The present article is a commencement at attempting to remedy this deficiency of scientific correlation. With this view, it will be strictly confined to the needs of practical workers, and all theoretical mathematical demonstrations will be omitted; it may, however, be said that the relations stated have already received a large amount of empirical verification. Great thanks are due from me to Professor Haussdorff and to Dr. G. Lipps, each of whom have supplied a useful theorem in polynomial probability; the former has also very kindly given valuable advice concerning the proof of the important formulæ for elimination of ‘‘systematic deviations.’’ At the same time, and for the same reason, the meaning and working of the various formulæ have been explained sufficiently, it is hoped, to render them readily usable even by those whose knowledge of mathematics is elementary. The fundamental procedure is accompanied by simple imaginary examples, while the more advanced parts are illustrated by cases that have actually occurred in my personal experience. For more abundant and positive exemplification, the reader is requested to refer to the under cited research, which is entirely built upon the principles and mathematical relations here laid down. In conclusion, the general value of the methodics recommended is emphasized by a brief criticism of the best correlational work hitherto made public, and also the important question is discussed as to the number of ‘‘cases’’ required for an experimental series.