Improved aerosol radiative properties as a foundation for solar geoengineering risk assessment

Side effects resulting from the deliberate injection of sulfate aerosols intended to partially offset climate change have motivated the investigation of alternatives, including solid aerosol materials. Sulfate aerosols warm the tropical tropopause layer, increasing the flux of water vapor into the stratosphere, accelerating ozone loss, and increasing radiative forcing. The high refractive index of some solid materials may lead to reduction in these risks. We present a new analysis of the scattering efficiency and absorption of a range of candidate solid aerosols. We utilize a comprehensive radiative transfer model driven by updated, physically consistent estimates of optical properties. We compute the potential increase in stratospheric water vapor and associated longwave radiative forcing. We find that the stratospheric heating calculated in this analysis indicates some materials to be substantially riskier than previous work. We also find that there are Earth‐abundant materials that may reduce some principal known risks relative to sulfate aerosols.

[1]  F. Urbach The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids , 1953 .

[2]  W. J. Choyke,et al.  Higher Absorption Edges in 6H SiC , 1968 .

[3]  W. J. Choyke,et al.  Higher Absorption Edges in Cubic SiC , 1969 .

[4]  François Gervais,et al.  Temperature dependence of transverse- and longitudinal-optic modes in TiO 2 (rutile) , 1974 .

[5]  M. Hass,et al.  Measurement of very low absorption coefficients by laser calorimetry. , 1975, Applied optics.

[6]  K. F. Palmer,et al.  Optical constants of sulfuric Acid; application to the clouds of venus? , 1975, Applied optics.

[7]  Robert E. Dickinson,et al.  The Role of Stratospheric Ozone in the Zonal and Seasonal Radiative Energy Balance of the Earth-Troposphere System , 1979 .

[8]  J. D. Mahlman,et al.  Stratospheric Sensitivity to Perturbations in Ozone and Carbon Dioxide: Radiative and Dynamical Response. , 1980 .

[9]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[10]  E. Shettle,et al.  A New Background Stratospheric Aerosol Model for Use in Atmospheric Radiation Models , 1988 .

[11]  Optical properties of alpha silicon carbide , 1988 .

[12]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[13]  M. Iacono,et al.  Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water Vapor , 1992 .

[14]  N. Nicoloso,et al.  Optical absorption studies of tetragonal and cubic thin-film yttria-stabilized zirconia , 1992 .

[15]  Ari Laor,et al.  Spectroscopic constraints on the properties of dust in active galactic nuclei , 1993 .

[16]  R. J. Bell,et al.  Optical properties of calcite and gypsum in crystalline and powdered form in the infrared and far-infrared , 1993 .

[17]  Tang,et al.  Urbach tail of anatase TiO2. , 1995, Physical review. B, Condensed matter.

[18]  M. McCormick,et al.  Atmospheric effects of the Mt Pinatubo eruption , 1995, Nature.

[19]  E. Teller,et al.  Global warming and ice ages: I. prospects for physics based modulation of global change , 1996 .

[20]  R. Johnson,et al.  Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review , 1996 .

[21]  C. Serna,et al.  Optical constants of tetragonal and cubic zirconias in the infrared , 1996 .

[22]  Optical properties of single-crystal anatase TiO2 , 1997 .

[23]  M. Molina,et al.  The reaction of ClONO2 with HCl on aluminum oxide , 1997 .

[24]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[25]  D. Edwards,et al.  Cubic Carbon (Diamond) , 1997 .

[26]  Michael E. Thomas,et al.  Aluminum Oxide (Al2O3) Revisited , 1997 .

[27]  Gorachand Ghosh,et al.  Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals , 1999 .

[28]  Stanley C. Solomon,et al.  Stratospheric ozone depletion: A review of concepts and history , 1999 .

[29]  David W. Keith,et al.  The effect of climate change on ozone depletion through changes in stratospheric water vapour , 1999, Nature.

[30]  T. Peter,et al.  Absorption Spectra and Optical Constants of Binary and Ternary Solutions of H2SO4, HNO3, and H2O in the Mid Infrared at Atmospheric Temperatures , 2000 .

[31]  S. Sherwood,et al.  On the control of stratospheric humidity , 2000 .

[32]  A. Zaitsev,et al.  Optical properties of diamond , 2001 .

[33]  G. Jellison,et al.  Spectroscopic ellipsometry of thin film and bulk anatase (TiO2) , 2003 .

[34]  Claus J. Nielsen,et al.  Spectroscopic Study of Aqueous H2SO4 at Different Temperatures and Compositions: Variations in Dissociation and Optical Properties , 2003 .

[35]  T. Yanagishita,et al.  Preparation of monodisperse SiO2 nanoparticles by membrane emulsification using ideally ordered anodic porous alumina. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[36]  Shepard A. Clough,et al.  Atmospheric radiative transfer modeling: a summary of the AER codes , 2005 .

[37]  U. Pal,et al.  Size-Controlled Synthesis of Spherical TiO2 Nanoparticles: Morphology, Crystallization, and Phase Transition , 2007 .

[38]  Brian Stout,et al.  T matrix of the homogeneous anisotropic sphere: applications to orientation-averaged resonant scattering. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[39]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[40]  R. Garcia,et al.  Acceleration of the Brewer–Dobson Circulation due to Increases in Greenhouse Gases , 2008 .

[41]  K. Taylor,et al.  Impact of geoengineering schemes on the global hydrological cycle , 2008, Proceedings of the National Academy of Sciences.

[42]  Toshihiko Masui,et al.  GLOBAL GHG EMISSION SCENARIOS UNDER GHG CONCENTRATION STABILIZATION TARGETS , 2008 .

[43]  Simone Tilmes,et al.  The Sensitivity of Polar Ozone Depletion to Proposed Geoengineering Schemes , 2008, Science.

[44]  J. Shepherd,et al.  Geoengineering the Climate: Science, Governance and Uncertainty , 2009 .

[45]  P. Cox,et al.  Impact of changes in diffuse radiation on the global land carbon sink , 2009, Nature.

[46]  D. Weisenstein,et al.  The impact of geoengineering aerosols on stratospheric temperature and ozone , 2009 .

[47]  J. I. Katz,et al.  Climate Engineering Responses to Climate Emergencies , 2009 .

[48]  David W Keith,et al.  Photophoretic levitation of engineered aerosols for geoengineering , 2010, Proceedings of the National Academy of Sciences.

[49]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[50]  Andrew Charlton-Perez,et al.  Stratospheric heating by potential geoengineering aerosols , 2011 .

[51]  B. Kravitz,et al.  Geoengineering: Whiter skies? , 2011 .

[52]  B. Kravitz,et al.  Sensitivity of stratospheric geoengineering with black carbon to aerosol size and altitude of injection , 2012 .

[53]  R. A. Cox,et al.  Stratospheric aerosol particles and solar-radiation management , 2012 .

[54]  D. S. Sayres,et al.  UV Dosage Levels in Summer: Increased Risk of Ozone Loss from Convectively Injected Water Vapor , 2012, Science.

[55]  K. Rosenlof,et al.  Stratospheric water vapor feedback , 2013, Proceedings of the National Academy of Sciences.

[56]  M. Schubert,et al.  Infrared dielectric anisotropy and phonon modes of rutile TiO2 , 2013 .

[57]  Hauke Schmidt,et al.  Solar irradiance reduction via climate engineering: Impact of different techniques on the energy balance and the hydrological cycle , 2013 .

[58]  D. MacMartin,et al.  Studying geoengineering with natural and anthropogenic analogs , 2013, Climatic Change.

[59]  V. Aquila,et al.  Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP) , 2014 .

[60]  T. Schmidt,et al.  Quantifying contributions to the recent temperature variability in the tropical tropopause layer , 2014 .

[61]  J. Urban,et al.  Vertical structure of stratospheric water vapour trends derived from merged satellite data. , 2014, Nature geoscience.

[62]  Luke D. Oman,et al.  Modifications of the quasi‐biennial oscillation by a geoengineering perturbation of the stratospheric aerosol layer , 2014 .

[63]  D. Shindell,et al.  Anthropogenic and Natural Radiative Forcing , 2014 .

[64]  Jim Haywood,et al.  Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection , 2015 .

[65]  D. Weisenstein,et al.  Solar geoengineering using solid aerosol in the stratosphere , 2015 .

[66]  Maik Renner,et al.  The hydrological sensitivity to global warming and solar geoengineering derived from thermodynamic constraints , 2015 .

[67]  E. Highwood,et al.  Stratospheric dynamics and midlatitude jets under geoengineering with space mirrors and sulfate and titania aerosols , 2015 .

[68]  C. Bitz,et al.  Inability of stratospheric sulfate aerosol injections to preserve the West Antarctic Ice Sheet , 2015 .

[69]  Lukas H. Meyer,et al.  The European Transdisciplinary Assessment of Climate Engineering (EuTRACE): Removing Greenhouse Gases from the Atmosphere and Reflecting Sunlight away from Earth , 2015 .

[70]  S. Solomon,et al.  Radiative Impacts of the 2011 Abrupt Drops in Water Vapor and Ozone in the Tropical Tropopause Layer , 2016 .

[71]  L. Oman,et al.  Transport of ice into the stratosphere and the humidification of the stratosphere over the 21st century , 2016, Geophysical research letters.