Pseudodifferential Operators and Nonlinear PDE
暂无分享,去创建一个
[1] L. Hörmander. The Nash-Moser Theorem and Paradifferential Operators , 1990 .
[2] C. B. Morrey. Multiple Integrals in the Calculus of Variations , 1966 .
[3] G. David,et al. A boundedness criterion for generalized Caldéron-Zygmund operators , 1984 .
[4] Tosio Kato,et al. Quasi-linear equations of evolution, with applications to partial differential equations , 1975 .
[5] J. Jost. Nonlinear Methods in Riemannian and Kählerian Geometry , 1988 .
[6] J. Rauch,et al. Propagation de la régularité locale de solutions d'équations hyperboliques non linéaires , 1986 .
[7] J. Bony. Second Microlocalization and Propagation of Singularities for Semi-Linear Hyperbolic Equations , 1986 .
[8] J. Moser. On Harnack's theorem for elliptic differential equations† , 1961 .
[9] Kurt Friedrichs,et al. On Symmetrizable Differential Operators , 1986 .
[10] M. Reed,et al. Propagation of singularities for semilinear hyperbolic equations in one space variable , 1980 .
[11] M. Sablé-Tougeron,et al. Régularité microlocale pour des problèmes aux limites non linéaires , 1984 .
[12] A. Majda. The existence of multi-dimensional shock fronts , 1983 .
[13] Y. Meyer. Régularité des solutions des équations aux dérivées partielles non linéaires , 1981 .
[14] Luis A. Caffarelli,et al. The Dirichlet problem for nonlinear second-order elliptic equations I , 1984 .
[15] M. Reed,et al. Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension , 1982 .
[16] Tosio Kato,et al. Commutator estimates and the euler and navier‐stokes equations , 1988 .
[17] D. DeTurck. The Cauchy problem for Lorentz metrics with prescribed Ricci curvature , 1983 .
[18] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[19] A. Majda. The stability of multi-dimensional shock fronts , 1983 .
[20] G. Métivier. Stability of Multi-Dimensional Weak Shocks , 1990 .
[21] L. Nirenberg,et al. On elliptic partial differential equations , 1959 .
[22] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[23] Andrew J. Majda,et al. Nonlinear Geometric Optics for Hyperbolic Systems of Conservation Laws , 1986 .
[24] Ronald R. Coifman,et al. Au delà des opérateurs pseudo-différentiels , 1978 .
[25] Jerrold E. Marsden,et al. Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity , 1977 .
[26] Thierry Gallouët,et al. Nonlinear Schrödinger evolution equations , 1980 .
[27] Y. Meyer,et al. Commutateurs d'intégrales singulières et opérateurs multilinéaires , 1978 .
[28] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[29] P. Gérard,et al. Opérateurs pseudo-différentiels et théorème de Nash-Moser , 1991 .
[30] Pseudo-differential operaors of type 1,1. , 1988 .
[31] 長瀬 道弘. The L[p]-boundedness of pseudo-differential operators with non-regular symbols , 1978 .
[32] Tosio Kato,et al. Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .
[33] J. Chemin. Calcul paradifférentiel précisé et applications à des équations aux dérivées partielles non semilinéaires , 1988 .
[34] Spreading of singularities at the boundary in semilinear hyperbolic mixed problems. II. Crossing and self-spreading , 1989 .
[35] Dennis DeTurck,et al. Some regularity theorems in riemannian geometry , 1981 .
[36] J. Rauch. Singularities of solutions of semilinear wave equations , 1982 .
[37] P. Lax. Hyperbolic systems of conservation laws II , 1957 .
[38] H. Triebel. Theory Of Function Spaces , 1983 .
[39] S. Agmon,et al. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .
[40] L. Nirenberg. Estimates and existence of solutions of elliptic equations , 1956 .
[41] Neil S. Trudinger,et al. Fully nonlinear, uniformly elliptic equations under natural structure conditions , 1983 .
[42] A. Majda. Compressible fluid flow and systems of conservation laws in several space variables , 1984 .
[43] M. Reed,et al. Microlocal regularity theorems for nonsmooth pseudodifferential operators and applications to nonlinear problems , 1984 .
[44] Jürgen Moser,et al. A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations , 1960 .
[45] Jeff Cheeger,et al. $C^\alpha$-compactness for manifolds with Ricci curvature and injectivity radius bounded below , 1992 .
[46] J. Marschall. Pseudodifferential operators with coefficients in Sobolev spaces , 1988 .
[47] G. Métivier. Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d'espace , 1986 .
[48] Guy Métivier,et al. Resonant One Dimensional Nonlinear Geometric Optics , 1993 .
[49] Y. Meyer,et al. Compensated compactness and Hardy spaces , 1993 .
[50] R. Michael Beals. Propagation and Interaction of Singularities in Nonlinear Hyperbolic Problems , 1989 .
[51] Jeffrey Rauch,et al. Singularities produced by the nonlinear interaction of three progressing waves;,examples , 1982 .
[52] J. Moser. A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .
[53] Lawrence C. Evans,et al. Classical solutions of fully nonlinear, convex, second‐order elliptic equations , 1982 .
[54] James Serrin,et al. The problem of dirichlet for quasilinear elliptic differential equations with many independent variables , 1969, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[55] J. Bony. Singularites des solutions des equations aux derivees partielles non linearies , 1980 .
[56] J. Eells,et al. Harmonic Mappings of Riemannian Manifolds , 1964 .
[57] A. Calderón. COMMUTATORS OF SINGULAR INTEGRAL OPERATORS. , 1965, Proceedings of the National Academy of Sciences of the United States of America.
[58] D. Kinderlehrer,et al. An introduction to variational inequalities and their applications , 1980 .