Pseudodifferential Operators and Nonlinear PDE

The theory of pseudodifferential operators has played an important role in many investigations into linear PDE. This book is devoted to a summary and reconsideration of some uses of pseudodifferential operator techniques in nonlinear PDE.

[1]  L. Hörmander The Nash-Moser Theorem and Paradifferential Operators , 1990 .

[2]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[3]  G. David,et al.  A boundedness criterion for generalized Caldéron-Zygmund operators , 1984 .

[4]  Tosio Kato,et al.  Quasi-linear equations of evolution, with applications to partial differential equations , 1975 .

[5]  J. Jost Nonlinear Methods in Riemannian and Kählerian Geometry , 1988 .

[6]  J. Rauch,et al.  Propagation de la régularité locale de solutions d'équations hyperboliques non linéaires , 1986 .

[7]  J. Bony Second Microlocalization and Propagation of Singularities for Semi-Linear Hyperbolic Equations , 1986 .

[8]  J. Moser On Harnack's theorem for elliptic differential equations† , 1961 .

[9]  Kurt Friedrichs,et al.  On Symmetrizable Differential Operators , 1986 .

[10]  M. Reed,et al.  Propagation of singularities for semilinear hyperbolic equations in one space variable , 1980 .

[11]  M. Sablé-Tougeron,et al.  Régularité microlocale pour des problèmes aux limites non linéaires , 1984 .

[12]  A. Majda The existence of multi-dimensional shock fronts , 1983 .

[13]  Y. Meyer Régularité des solutions des équations aux dérivées partielles non linéaires , 1981 .

[14]  Luis A. Caffarelli,et al.  The Dirichlet problem for nonlinear second-order elliptic equations I , 1984 .

[15]  M. Reed,et al.  Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension , 1982 .

[16]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[17]  D. DeTurck The Cauchy problem for Lorentz metrics with prescribed Ricci curvature , 1983 .

[18]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[19]  A. Majda The stability of multi-dimensional shock fronts , 1983 .

[20]  G. Métivier Stability of Multi-Dimensional Weak Shocks , 1990 .

[21]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[22]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[23]  Andrew J. Majda,et al.  Nonlinear Geometric Optics for Hyperbolic Systems of Conservation Laws , 1986 .

[24]  Ronald R. Coifman,et al.  Au delà des opérateurs pseudo-différentiels , 1978 .

[25]  Jerrold E. Marsden,et al.  Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity , 1977 .

[26]  Thierry Gallouët,et al.  Nonlinear Schrödinger evolution equations , 1980 .

[27]  Y. Meyer,et al.  Commutateurs d'intégrales singulières et opérateurs multilinéaires , 1978 .

[28]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[29]  P. Gérard,et al.  Opérateurs pseudo-différentiels et théorème de Nash-Moser , 1991 .

[30]  Pseudo-differential operaors of type 1,1. , 1988 .

[31]  長瀬 道弘 The L[p]-boundedness of pseudo-differential operators with non-regular symbols , 1978 .

[32]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[33]  J. Chemin Calcul paradifférentiel précisé et applications à des équations aux dérivées partielles non semilinéaires , 1988 .

[34]  Spreading of singularities at the boundary in semilinear hyperbolic mixed problems. II. Crossing and self-spreading , 1989 .

[35]  Dennis DeTurck,et al.  Some regularity theorems in riemannian geometry , 1981 .

[36]  J. Rauch Singularities of solutions of semilinear wave equations , 1982 .

[37]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[38]  H. Triebel Theory Of Function Spaces , 1983 .

[39]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[40]  L. Nirenberg Estimates and existence of solutions of elliptic equations , 1956 .

[41]  Neil S. Trudinger,et al.  Fully nonlinear, uniformly elliptic equations under natural structure conditions , 1983 .

[42]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[43]  M. Reed,et al.  Microlocal regularity theorems for nonsmooth pseudodifferential operators and applications to nonlinear problems , 1984 .

[44]  Jürgen Moser,et al.  A new proof of de Giorgi's theorem concerning the regularity problem for elliptic differential equations , 1960 .

[45]  Jeff Cheeger,et al.  $C^\alpha$-compactness for manifolds with Ricci curvature and injectivity radius bounded below , 1992 .

[46]  J. Marschall Pseudodifferential operators with coefficients in Sobolev spaces , 1988 .

[47]  G. Métivier Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d'espace , 1986 .

[48]  Guy Métivier,et al.  Resonant One Dimensional Nonlinear Geometric Optics , 1993 .

[49]  Y. Meyer,et al.  Compensated compactness and Hardy spaces , 1993 .

[50]  R. Michael Beals Propagation and Interaction of Singularities in Nonlinear Hyperbolic Problems , 1989 .

[51]  Jeffrey Rauch,et al.  Singularities produced by the nonlinear interaction of three progressing waves;,examples , 1982 .

[52]  J. Moser A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .

[53]  Lawrence C. Evans,et al.  Classical solutions of fully nonlinear, convex, second‐order elliptic equations , 1982 .

[54]  James Serrin,et al.  The problem of dirichlet for quasilinear elliptic differential equations with many independent variables , 1969, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[55]  J. Bony Singularites des solutions des equations aux derivees partielles non linearies , 1980 .

[56]  J. Eells,et al.  Harmonic Mappings of Riemannian Manifolds , 1964 .

[57]  A. Calderón COMMUTATORS OF SINGULAR INTEGRAL OPERATORS. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[58]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .