Rating LDA model for collaborative filtering

People are pleased with the great wealth of products in online stores. However, it is more and more difficult for people to choose their favorite products in an online store. Thus, recommendation systems are necessary to provide useful suggestions and selections. A user's choice is not only influenced by his/her interests, but also by the ratings of others. In this paper, we propose a Rating LDA (RLDA) Model for collaborative filtering by adding rating information to the Latent Dirichlet Allocation (LDA). User behavior is not independent; it follows the trend of others. Therefore, we assume that for similar interests, the higher the proportion of high ratings, the more popular the items. We perform experiments on two real world data sets: MovieLens100k and MovieLens1M. Results show that, in terms of F1 score, our proposed approach significantly outperforms some baseline methods.

[1]  Jiahui Liu,et al.  Personalized news recommendation based on click behavior , 2010, IUI '10.

[2]  Wei Chen,et al.  A hybrid approach of topic model and matrix factorization based on two-step recommendation framework , 2014, Journal of Intelligent Information Systems.

[3]  F. Maxwell Harper,et al.  An Economic Model of User Rating in an Online Recommender System , 2005, User Modeling.

[4]  Fan Lin,et al.  Sparse Online Learning for Collaborative Filtering , 2016, Int. J. Comput. Commun. Control.

[5]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[6]  Antonino Nocera,et al.  Recommendation of reliable users, social networks and high-quality resources in a Social Internetworking System , 2011, AI Commun..

[7]  Roberto Turrin,et al.  Performance of recommender algorithms on top-n recommendation tasks , 2010, RecSys '10.

[8]  Guangquan Zhang,et al.  BizSeeker: A hybrid semantic recommendation system for personalized government-to-business e-services , 2010, Internet Res..

[9]  Chun Chen,et al.  An exploration of improving collaborative recommender systems via user-item subgroups , 2012, WWW.

[10]  Patrick Seemann,et al.  Matrix Factorization Techniques for Recommender Systems , 2014 .

[11]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[12]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[13]  David B. Dunson,et al.  Probabilistic topic models , 2011, KDD '11 Tutorials.

[14]  G. Karypis,et al.  TR 00-043 Application of Dimensionality Reduction in Recommender SystemA Case Study , 2000 .

[15]  U. Fayyad Knowledge Discovery and Data Mining: An Overview , 1995 .

[16]  John Riedl,et al.  An Algorithmic Framework for Performing Collaborative Filtering , 1999, SIGIR Forum.

[17]  James Bennett,et al.  The Netflix Prize , 2007 .

[18]  Min Zhao,et al.  Probabilistic latent preference analysis for collaborative filtering , 2009, CIKM.

[19]  Michael J. Pazzani,et al.  Learning Collaborative Information Filters , 1998, ICML.

[20]  Yehuda Koren,et al.  The BellKor solution to the Netflix Prize , 2007 .

[21]  Giuseppe M. L. Sarnè,et al.  Recommending multimedia web services in a multi-device environment , 2013, Inf. Syst..

[22]  Michael J. Pazzani,et al.  Collaborative Filtering with the Simple Bayesian Classifier , 2000, PRICAI.

[23]  Liu,et al.  Combining User-Based and Item-Based Models for Collaborative Filtering Using Stacked Regression , 2014 .

[24]  Edward Y. Chang,et al.  Collaborative filtering for orkut communities: discovery of user latent behavior , 2009, WWW '09.

[25]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[26]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[27]  Giuseppe M. L. Sarnè,et al.  Recommending Users in Social Networks by Integrating Local and Global Reputation , 2014, IDCS.

[28]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[29]  Yehuda Koren,et al.  Factorization meets the neighborhood: a multifaceted collaborative filtering model , 2008, KDD.

[30]  Hui Xiong,et al.  Enhancing Collaborative Filtering by User Interest Expansion via Personalized Ranking , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[31]  Vikas Sindhwani,et al.  Recommender Systems , 2010, Encyclopedia of Machine Learning and Data Mining.

[32]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[33]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[34]  Domenico Rosaci,et al.  CILIOS: Connectionist inductive learning and inter-ontology similarities for recommending information agents , 2007, Inf. Syst..

[35]  Jure Leskovec,et al.  Hidden factors and hidden topics: understanding rating dimensions with review text , 2013, RecSys.

[36]  Dean P. Foster,et al.  Clustering Methods for Collaborative Filtering , 1998, AAAI 1998.

[37]  Benjamin M. Marlin,et al.  Modeling User Rating Profiles For Collaborative Filtering , 2003, NIPS.

[38]  Wei Chen,et al.  Interest before liking: Two-step recommendation approaches , 2013, Knowl. Based Syst..

[39]  Yehuda Koren,et al.  OrdRec: an ordinal model for predicting personalized item rating distributions , 2011, RecSys '11.

[40]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[41]  Jie Lu,et al.  A hybrid trust‐enhanced collaborative filtering recommendation approach for personalized government‐to‐business e‐services , 2011, Int. J. Intell. Syst..

[42]  John Riedl,et al.  Recommender systems in e-commerce , 1999, EC '99.

[43]  Michael J. Pazzani,et al.  Improvement of Collaborative Filtering with the Simple Bayesian Classifier 1 , 2002 .

[44]  Santanu Chaudhury,et al.  Improving Collaborative Filtering Based Recommenders Using Topic Modelling , 2014, 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT).

[45]  Alexander J. Smola,et al.  Maximum Margin Matrix Factorization for Collaborative Ranking , 2007 .

[46]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.