Barycenters in the Wasserstein Space
暂无分享,去创建一个
[1] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[2] P. Meyer,et al. Probabilities and potential C , 1978 .
[3] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[4] M. Knott,et al. On a generalization of cyclic monotonicity and distances among random vectors , 1994 .
[5] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[6] W. Gangbo,et al. Optimal maps for the multidimensional Monge-Kantorovich problem , 1998 .
[7] L. Rüschendorf,et al. On the n-Coupling Problem , 2002 .
[8] Karl-Theodor Sturm,et al. Probability Measures on Metric Spaces of Nonpositive Curvature , 2003 .
[9] C. Villani. Topics in Optimal Transportation , 2003 .
[10] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[11] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[12] P. Chiappori,et al. Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness , 2007 .
[13] G. Carlier,et al. Matching for teams , 2010 .
[14] Julien Rabin,et al. Wasserstein Barycenter and Its Application to Texture Mixing , 2011, SSVM.
[15] Shin-Ichi Ohta,et al. Barycenters in Alexandrov spaces of curvature bounded below , 2012 .