On periodic wave solutions with asymptotic behaviors to a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation in fluid dynamics

Abstract In this paper, a ( 3 + 1 ) -dimensional generalized B-type Kadomtsev–Petviashvili equation is investigated, which can be used to describe weakly dispersive waves propagating in a quasi media and fluid mechanics. Based on the Bell polynomials, its multiple-soliton solutions and the bilinear form with some reductions are derived, respectively. Furthermore, by using Riemann theta function, we construct one- and two-periodic wave solutions for the equation. Finally, we study the asymptotic behavior of the periodic wave solutions, which implies that the periodic wave solutions can be degenerated to the soliton solutions under a small amplitude limit.

[1]  Engui Fan,et al.  Quasi-periodic waves and an asymptotic property for the asymmetrical Nizhnik–Novikov–Veselov equation , 2009 .

[2]  M. Tu,et al.  On the constrained B-type Kadomtsev–Petviashvili hierarchy: Hirota bilinear equations and Virasoro symmetry , 2011 .

[3]  Wen-Xiu Ma,et al.  Wronskian and Grammian solutions to a (3 + 1)-dimensional generalized KP equation , 2011, Appl. Math. Comput..

[4]  J. Nimmo,et al.  On the combinatorics of the Hirota D-operators , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  M. Jimbo,et al.  TRANSFORMATION GROUPS FOR SOLITON EQUATIONS , 1982 .

[6]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[7]  Bo Tian,et al.  New family of overturning soliton solutions for a typical breaking soliton equation , 1995 .

[8]  Shou-Fu Tian,et al.  On the Lie algebras, generalized symmetries and darboux transformations of the fifth-order evolution equations in shallow water , 2015 .

[9]  R. Hirota Direct Methods in Soliton Theory (非線形現象の取扱いとその物理的課題に関する研究会報告) , 1976 .

[10]  Engui Fan,et al.  Quasiperiodic waves and asymptotic behavior for Bogoyavlenskii's breaking soliton equation in (2+1) dimensions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Li Cheng,et al.  Multiple wave solutions and auto-Bäcklund transformation for the (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation , 2015, Comput. Math. Appl..

[12]  Bo Tian,et al.  Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: New transformation with burstons, brightons and symbolic computation , 2006 .

[13]  Yong Chen,et al.  PDEBellII: A Maple package for finding bilinear forms, bilinear Bäcklund transformations, Lax pairs and conservation laws of the KdV-type equations , 2014, Comput. Phys. Commun..

[14]  Abdul-Majid Wazwaz Two B-type Kadomtsev–Petviashvili equations of (2 + 1) and (3 + 1) dimensions: Multiple soliton solutions, rational solutions and periodic solutions , 2013 .

[15]  Max Neunhöffer,et al.  LIE Λ-ALGEBRAS , 2009 .

[16]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[17]  Deng-Shan Wang,et al.  Prolongation structures and matter-wave solitons in F=1 spinor Bose-Einstein condensate with time-dependent atomic scattering lengths in an expulsive harmonic potential , 2014, Commun. Nonlinear Sci. Numer. Simul..

[18]  Xing-Biao Hu,et al.  An integrable symmetric (2+1)-dimensional Lotka–Volterra equation and a family of its solutions , 2005 .

[19]  Wolfgang K. Schief,et al.  Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory , 2002 .

[20]  Wen-Xiu Ma,et al.  Computers and Mathematics with Applications Linear Superposition Principle Applying to Hirota Bilinear Equations , 2022 .

[21]  Shou-Fu Tian,et al.  Lie symmetries and nonlocally related systems of the continuous and discrete dispersive long waves system by geometric approach , 2015 .

[22]  Shou-Fu Tian,et al.  Riemann theta functions periodic wave solutions and rational characteristics for the (1+1)-dimensional and (2+1)-dimensional Ito equation , 2013 .

[23]  Shou-Fu Tian,et al.  Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations , 2010 .

[24]  Wen-Xiu Ma,et al.  EXACT ONE-PERIODIC AND TWO-PERIODIC WAVE SOLUTIONS TO HIROTA BILINEAR EQUATIONS IN (2+1) DIMENSIONS , 2008, 0812.4316.

[25]  G. Bluman,et al.  Symmetries and differential equations , 1989 .

[26]  Johan Springael,et al.  Classical Darboux transformations and the KP hierarchy , 2001 .

[27]  Shou-Fu Tian,et al.  On the integrability of a generalized variable-coefficient Kadomtsev–Petviashvili equation , 2011, 1112.1499.

[28]  Hui-Qin Hao,et al.  Coherently coupled solitons, breathers and rogue waves for polarized optical waves in an isotropic medium , 2015 .

[29]  Shou-Fu Tian,et al.  On the Integrability of a Generalized Variable‐Coefficient Forced Korteweg‐de Vries Equation in Fluids , 2014 .

[30]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for a (3 + 1)-dimensional generalized KP equation , 2012 .

[31]  Wen-Xiu Ma,et al.  Pfaffianized systems for a generalized Kadomtsev–Petviashvili equation , 2013 .

[32]  S. Lou Extended Painlevé Expansion, Nonstandard Truncation and Special Reductions of Nonlinear Evolution Equations , 1998 .

[33]  Tian Shou-Fu,et al.  On the Quasi-Periodic Wave Solutions and Asymptotic Analysis to a (3+1)-Dimensional Generalized Kadomtsev—Petviashvili Equation , 2014 .

[34]  Masaki Kashiwara,et al.  KP Hierarchies of Orthogonal and Symplectic Type–Transformation Groups for Soliton Equations VI– , 1981 .

[35]  Akira Nakamura,et al.  A Direct Method of Calculating Periodic Wave Solutions to Nonlinear Evolution Equations. I. Exact Two-Periodic Wave Solution , 1979 .

[36]  Shou-Fu Tian,et al.  A kind of explicit Riemann theta functions periodic waves solutions for discrete soliton equations , 2011 .

[37]  Y. Hon,et al.  A KIND OF EXPLICIT QUASI-PERIODIC SOLUTION AND ITS LIMIT FOR THE TODA LATTICE EQUATION , 2008 .

[38]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[39]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .