Optimal quantum channel estimation of two interacting qubits subject to decoherence

We investigate the estimation of the quantum channel parameter for a two-qubit system with each qubit independently interacting with its Markovian environment. The dynamics of quantum Fisher information in this system is studied and employed as a measure to quantify the precision of the estimation. We find that the dynamic behavior of quantum Fisher information with respect to the decoherence rate γ is proportional to t2/[exp(γt) − 1] and exp(−2γt) in the unitary limit and the completely decoherent limit, respectively. We also study the evolution of quantum Fisher information with respect to the interaction strength, which shows oscillating behavior. Furthermore, we show that the increase in entanglement of the input state may not enhance the precision of quantum estimation.

[1]  J. Eberly,et al.  Quantum open system theory: bipartite aspects. , 2006, Physical review letters.

[2]  S. Khalek,et al.  Quantum metrology with entangled spin-coherent states of two modes , 2012 .

[3]  F. Nori,et al.  Natural and artificial atoms for quantum computation , 2010, 1002.1871.

[4]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[5]  Xiaoguang Wang,et al.  Quantum Fisher information of the Greenberger-Horne-Zeilinger state in decoherence channels , 2011 .

[6]  Jian Ma,et al.  Fisher information in a quantum-critical environment , 2010 .

[7]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[8]  G. Agarwal,et al.  Bright and dark periods in the entanglement dynamics of interacting qubits in contact with the environment , 2009, 0901.2114.

[9]  F. Nori,et al.  Measurement-based quantum phase estimation algorithm for finding eigenvalues of non-unitary matrices , 2009, 0906.2538.

[10]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[11]  M. Ziman,et al.  Direct estimation of decoherence rates , 2012, 1207.3053.

[12]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[13]  V. Vuletić,et al.  Implementation of cavity squeezing of a collective atomic spin. , 2009, Physical review letters.

[14]  M. Tsang Quantum transition-edge detectors , 2013, 1305.1750.

[15]  L. Pezzè,et al.  Entanglement, nonlinear dynamics, and the heisenberg limit. , 2007, Physical review letters.

[16]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[17]  V. Vuletić,et al.  States of an ensemble of two-level atoms with reduced quantum uncertainty. , 2008, Physical review letters.

[18]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[19]  Franco Nori,et al.  Scalable quantum computation via local control of only two qubits , 2009, 0905.3373.

[20]  Zhe Sun Spin squeezing under decoherence: Role of the quantum phase transition , 2011 .

[21]  L. Davidovich,et al.  Quantum Metrology for Noisy Systems , 2011 .

[22]  Akio Fujiwara,et al.  Quantum channel identification problem , 2001 .

[23]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[25]  Dietmar G. Fischer,et al.  Channel estimation with noisy entanglement , 2001 .

[26]  P. Kok,et al.  Quantum lithography, entanglement and Heisenberg-limited parameter estimation , 2004, quant-ph/0402083.

[27]  Franco Nori,et al.  Sudden vanishing and reappearance of nonclassical effects: General occurrence of finite-time decays and periodic vanishings of nonclassicality and entanglement witnesses , 2011, 1101.4956.

[28]  Holger Mack,et al.  Enhanced estimation of a noisy quantum channel using entanglement , 2001 .

[29]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[30]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[31]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[32]  Nan Li,et al.  Entanglement detection via quantum Fisher information , 2013 .

[33]  F. Nori,et al.  Quantum phase estimation algorithms with delays: effects of dynamical phases , 2003, quant-ph/0305038.

[34]  Franco Nori,et al.  Fisher information under decoherence in Bloch representation , 2012, 1212.0917.

[35]  F. Nori,et al.  Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits , 2011, 1103.0835.

[36]  Quantum estimation of a damping constant , 2007, quant-ph/0703091.

[37]  K. Berrada,et al.  Non-Markovian effect on the precision of parameter estimation , 2013 .

[38]  Franco Nori,et al.  Sudden vanishing of spin squeezing under decoherence , 2009, 0909.4834.

[39]  K. Berrada Quantum metrology with SU(1,1) coherent states in the presence of nonlinear phase shifts , 2013 .

[40]  M. Hotta,et al.  N-body-extended channel estimation for low-noise parameters , 2006 .

[41]  Franco Nori,et al.  Quantum spin squeezing , 2010, 1011.2978.

[42]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[43]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[44]  Franco Nori,et al.  Indirect quantum tomography of quadratic Hamiltonians , 2010, 1004.5018.

[45]  Franco Nori,et al.  Coupling strength estimation for spin chains despite restricted access , 2008, 0810.2866.

[46]  G Vallone,et al.  Experimental realization of optimal noise estimation for a general Pauli channel. , 2011, Physical review letters.