Origin of the colossal positive and negative thermal expansion in Ag3[Co(CN)6]: an ab initio density functional theory study

DFT calculations have been used to provide insights into the origin of the colossal positive and negative thermal expansion in Ag3[Co(CN)6]. The results confirm that the positive expansion within the trigonal basal plane and the negative expansion in the orthogonal direction are coupled due to the existence of a network defined by nearly rigid bonds within the chains of Co–C–N–Ag–N–C–Co linkages. The origin of the colossal values of the coefficients of thermal expansion arise from an extremely shallow energy surface that allows a flexing of the structure with small energy cost. The thermal expansion can be achieved with a modest value of the overall Gruneisen parameter. The energy surface is so shallow that we need to incorporate a small empirical dispersive interaction to give ground-state lattice parameters that match experimental values at low temperature. We compare the results with DFT calculations on two isostructural systems: H3[Co(CN)6], which is known to have much smaller values of the coefficients of thermal expansion, and Au3[Co(CN)6], which has not yet been synthesized but which is predicted by our calculations to be another candidate material for showing colossal positive and negative thermal expansion.

[1]  Douglas Thain,et al.  Distributed computing in practice: the Condor experience , 2005, Concurr. Pract. Exp..

[2]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.

[3]  Pekka Pyykkö,et al.  Theory of the d10–d10 Closed‐Shell Attraction: 1. Dimers Near Equilibrium , 1997 .

[4]  M. Calleja,et al.  Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6] , 2008, Science.

[5]  Julian D. Gale,et al.  The General Utility Lattice Program (GULP) , 2003 .

[6]  A. Sleight ISOTROPIC NEGATIVE THERMAL EXPANSION , 1998 .

[7]  G. V. Gibbs,et al.  High-temperature crystal chemistry of hydrous Mg- and Fe-cordierites , 1979 .

[8]  K. Knight,et al.  Calibration of excess thermodynamic properties and elastic constant variations associated with the alpha beta phase transition in quartz , 1998 .

[9]  V. Heine,et al.  Origin of the negative thermal expansion in and , 1996 .

[10]  Julian D Gale,et al.  Origin of the negative thermal expansion in and , 1996 .

[11]  P. Pyykkö Relativity, gold, closed-shell interactions, and CsAu.NH3. , 2002, Angewandte Chemie.

[12]  A. Goodwin,et al.  Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials , 2005 .

[13]  Martin T. Dove,et al.  CamGrid: Experiences in constructing a university-wide, Condor-based grid at the University of Cambridge , 2008 .

[14]  Martin T. Dove,et al.  Geometrical Origin and Theory of Negative Thermal Expansion in Framework Structures , 1999 .

[15]  L. Pauling,et al.  A trireticulate crystal structure: trihydrogen cobalticyanide and trisilver cobalticyanide. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[16]  John S. O. Evans,et al.  Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 , 1996, Science.

[17]  Chris J. Pickard,et al.  Population analysis in plane wave electronic structure calculations , 1996 .

[18]  Martin T. Dove,et al.  Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6]. , 2008 .

[19]  R. Herbst‐Irmer,et al.  Structural studies of lanthanide ion complexes of pure gold, pure silver and mixed metal (gold-silver) dicyanides. , 2005, Dalton transactions.

[20]  Martin T. Dove,et al.  Structure and dynamics : an atomic view of materials , 2003 .

[21]  Andrew Lumsdaine,et al.  A Component Architecture for LAM/MPI , 2003, PVM/MPI.

[22]  J. G. Collins,et al.  Thermal expansion of solids at low temperatures , 1980 .

[23]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[24]  Shah,et al.  Population analysis of plane-wave electronic structure calculations of bulk materials. , 1996, Physical review. B, Condensed matter.

[25]  V. Heine,et al.  Rigid-unit phonon modes and structural phase transitions in framework silicates , 1996 .

[26]  M. Pierrot,et al.  Etude structurale de la série des hexacyanoferrates(II,III) d'hydrogène: H3+x[FeIIxFeIII1−x(CN)6].yH2O. I. Structures cristallines des phases hexagonales H, H3FeIII(CN)6 et H3CoIII(CN)6, par diffraction des rayons X et des neutrons , 1972 .

[27]  John S. O. Evans,et al.  Argentophilicity-dependent colossal thermal expansion in extended prussian blue analogues. , 2008, Journal of the American Chemical Society.

[28]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[29]  Sean C. Smith,et al.  Van der Waals-corrected density functional theory: benchmarking for hydrogen–nanotube and nanotube–nanotube interactions , 2005, Nanotechnology.

[30]  Martin T. Dove,et al.  Local structure in Ag3[Co(CN)6]: colossal thermal expansion, rigid unit modes and argentophilic interactions , 2008, 0802.4385.