Origin of the colossal positive and negative thermal expansion in Ag3[Co(CN)6]: an ab initio density functional theory study
暂无分享,去创建一个
[1] Douglas Thain,et al. Distributed computing in practice: the Condor experience , 2005, Concurr. Pract. Exp..
[2] Pekka Pyykkö,et al. Theoretical chemistry of gold. , 2004, Angewandte Chemie.
[3] Pekka Pyykkö,et al. Theory of the d10–d10 Closed‐Shell Attraction: 1. Dimers Near Equilibrium , 1997 .
[4] M. Calleja,et al. Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6] , 2008, Science.
[5] Julian D. Gale,et al. The General Utility Lattice Program (GULP) , 2003 .
[6] A. Sleight. ISOTROPIC NEGATIVE THERMAL EXPANSION , 1998 .
[7] G. V. Gibbs,et al. High-temperature crystal chemistry of hydrous Mg- and Fe-cordierites , 1979 .
[8] K. Knight,et al. Calibration of excess thermodynamic properties and elastic constant variations associated with the alpha beta phase transition in quartz , 1998 .
[9] V. Heine,et al. Origin of the negative thermal expansion in and , 1996 .
[10] Julian D Gale,et al. Origin of the negative thermal expansion in and , 1996 .
[11] P. Pyykkö. Relativity, gold, closed-shell interactions, and CsAu.NH3. , 2002, Angewandte Chemie.
[12] A. Goodwin,et al. Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials , 2005 .
[13] Martin T. Dove,et al. CamGrid: Experiences in constructing a university-wide, Condor-based grid at the University of Cambridge , 2008 .
[14] Martin T. Dove,et al. Geometrical Origin and Theory of Negative Thermal Expansion in Framework Structures , 1999 .
[15] L. Pauling,et al. A trireticulate crystal structure: trihydrogen cobalticyanide and trisilver cobalticyanide. , 1968, Proceedings of the National Academy of Sciences of the United States of America.
[16] John S. O. Evans,et al. Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 , 1996, Science.
[17] Chris J. Pickard,et al. Population analysis in plane wave electronic structure calculations , 1996 .
[18] Martin T. Dove,et al. Colossal Positive and Negative Thermal Expansion in the Framework Material Ag3[Co(CN)6]. , 2008 .
[19] R. Herbst‐Irmer,et al. Structural studies of lanthanide ion complexes of pure gold, pure silver and mixed metal (gold-silver) dicyanides. , 2005, Dalton transactions.
[20] Martin T. Dove,et al. Structure and dynamics : an atomic view of materials , 2003 .
[21] Andrew Lumsdaine,et al. A Component Architecture for LAM/MPI , 2003, PVM/MPI.
[22] J. G. Collins,et al. Thermal expansion of solids at low temperatures , 1980 .
[23] Matt Probert,et al. First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .
[24] Shah,et al. Population analysis of plane-wave electronic structure calculations of bulk materials. , 1996, Physical review. B, Condensed matter.
[25] V. Heine,et al. Rigid-unit phonon modes and structural phase transitions in framework silicates , 1996 .
[26] M. Pierrot,et al. Etude structurale de la série des hexacyanoferrates(II,III) d'hydrogène: H3+x[FeIIxFeIII1−x(CN)6].yH2O. I. Structures cristallines des phases hexagonales H, H3FeIII(CN)6 et H3CoIII(CN)6, par diffraction des rayons X et des neutrons , 1972 .
[27] John S. O. Evans,et al. Argentophilicity-dependent colossal thermal expansion in extended prussian blue analogues. , 2008, Journal of the American Chemical Society.
[28] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .
[29] Sean C. Smith,et al. Van der Waals-corrected density functional theory: benchmarking for hydrogen–nanotube and nanotube–nanotube interactions , 2005, Nanotechnology.
[30] Martin T. Dove,et al. Local structure in Ag3[Co(CN)6]: colossal thermal expansion, rigid unit modes and argentophilic interactions , 2008, 0802.4385.