SAMPLING UNCERTAIN CONSTRAINTS UNDER PARAMETRIC DISTRIBUTIONS

We consider optimization problems with uncertain constraints that need to be satisfied probabilistically. When data are available, a common method to obtain feasible solutions for such problems is to impose sampled constraints, following the so-called scenario generation (SG) approach. However, when the data size is small, the sampled constraints may not support a guarantee on the feasibility of the obtained solution. This paper studies how to leverage parametric information and the power of Monte Carlo simulation to obtain feasible solutions even when the data are not sufficient to support the use of SG. Our approach makes use of a distributionally robust optimization formulation that informs the Monte Carlo sample size needed to achieve our guarantee.

[1]  Mervin E. Muller,et al.  A note on a method for generating points uniformly on n-dimensional spheres , 1959, CACM.

[2]  I. Vajda On thef-divergence and singularity of probability measures , 1972 .

[3]  András Prékopa,et al.  Solution of a Product Substitution Problem Using Stochastic Programming , 2000 .

[4]  Soumyadip Ghosh,et al.  Robust Analysis in Stochastic Simulation: Computation and Performance Guarantees , 2015, Oper. Res..

[5]  Güzin Bayraksan,et al.  Phi-Divergence Constrained Ambiguous Stochastic Programs for Data-Driven Optimization , 2016 .

[6]  Lorenzo Fagiano,et al.  Randomized Solutions to Convex Programs with Multiple Chance Constraints , 2012, SIAM J. Optim..

[7]  Daniel Kuhn,et al.  Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations , 2015, Mathematical Programming.

[8]  Qing-Guo Wang,et al.  Sequential Randomized Algorithms for Convex Optimization in the Presence of Uncertainty , 2013, IEEE Transactions on Automatic Control.

[9]  Marco C. Campi,et al.  FAST - Fast Algorithm for the Scenario Technique , 2014, Oper. Res..

[10]  James R. Luedtke,et al.  A Sample Approximation Approach for Optimization with Probabilistic Constraints , 2008, SIAM J. Optim..

[11]  Henry Lam,et al.  Robust Sensitivity Analysis for Stochastic Systems , 2013, Math. Oper. Res..

[12]  K. D. Tocher,et al.  Confluent Hypergeometric Functions , 1960 .

[13]  Olga Korosteleva,et al.  Mathematical Statistics: Asymptotic Minimax Theory , 2011 .

[14]  Daniel Kuhn,et al.  A distributionally robust perspective on uncertainty quantification and chance constrained programming , 2015, Mathematical Programming.

[15]  Giuseppe Carlo Calafiore,et al.  On Repetitive Scenario Design , 2016, ArXiv.

[16]  András Prékopa,et al.  Serially Linked Reservoir System Design Using Stochastic Programing , 1978 .

[17]  Thomas A. Henzinger,et al.  Probabilistic programming , 2014, FOSE.

[18]  Daniel Kuhn,et al.  Distributionally Robust Convex Optimization , 2014, Oper. Res..

[19]  Siqian Shen,et al.  Ambiguous Chance-Constrained Bin Packing under Mean-Covariance Information , 2018 .

[20]  Garud Iyengar,et al.  Ambiguous chance constrained problems and robust optimization , 2006, Math. Program..

[21]  Marco C. Campi,et al.  Wait-and-judge scenario optimization , 2016, Mathematical Programming.

[22]  Barry C. Arnold,et al.  Joint Confidence Sets for the Mean and Variance of a Normal Distribution , 1998 .

[23]  Ruiwei Jiang,et al.  Data-driven chance constrained stochastic program , 2015, Mathematical Programming.

[24]  P. Dupuis,et al.  Minimax optimal control of stochastic uncertain systems with relative entropy constraints , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[25]  C. Macal,et al.  ROBUST SIMULATION OF STOCHASTIC SYSTEMS WITH INPUT UNCERTAINTIES MODELED BY STATISTICAL DIVERGENCES , 2015 .

[26]  Andrew E. B. Lim,et al.  Model Uncertainty, Robust Optimization and Learning , 2006 .

[27]  S. Kalla,et al.  CONFLUENT HYPERGEOMETRIC FUNCTION IN THE KERNELS , 2005 .

[28]  Giuseppe Carlo Calafiore,et al.  Research on probabilistic methods for control system design , 2011, Autom..

[29]  Daniel Kuhn,et al.  Ambiguous Joint Chance Constraints Under Mean and Dispersion Information , 2017, Oper. Res..

[30]  Marco C. Campi,et al.  The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs , 2008, SIAM J. Optim..

[31]  Frank Nielsen,et al.  On the chi square and higher-order chi distances for approximating f-divergences , 2013, IEEE Signal Processing Letters.

[32]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[33]  P. Glasserman,et al.  Robust risk measurement and model risk , 2012 .

[34]  Ao Tang,et al.  Random convex approximations of ambiguous chance constrained programs , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[35]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[36]  W. Greene,et al.  计量经济分析 = Econometric analysis , 2009 .

[37]  A. Prékopa,et al.  Flood control reservoir system design using stochastic programming , 1978 .

[38]  A. Kleywegt,et al.  Distributionally Robust Stochastic Optimization with Wasserstein Distance , 2016, Math. Oper. Res..

[39]  Andrzej Ruszczynski,et al.  An Efficient Trajectory Method for Probabilistic Production-Inventory-Distribution Problems , 2007, Oper. Res..

[40]  Yang Kang,et al.  Sample Out-of-Sample Inference Based on Wasserstein Distance , 2016, Oper. Res..

[41]  Jing Cao,et al.  Robust Simulation of Global Warming Policies Using the DICE Model , 2012, Manag. Sci..

[42]  Henry Lam,et al.  Sensitivity to Serial Dependency of Input Processes: A Robust Approach , 2016, Manag. Sci..

[43]  Yuanming Shi,et al.  Optimal Stochastic Coordinated Beamforming for Wireless Cooperative Networks With CSI Uncertainty , 2013, IEEE Transactions on Signal Processing.

[44]  Jun Luo,et al.  Chance Constrained Selection of the Best , 2015, INFORMS J. Comput..

[45]  Benjamin Van Roy,et al.  On Constraint Sampling in the Linear Programming Approach to Approximate Dynamic Programming , 2004, Math. Oper. Res..

[46]  M. C. CAMPI,et al.  Random Convex Programs with L1-Regularization: Sparsity and Generalization , 2013, SIAM J. Control. Optim..