An Amino Acid‐Based Thixotropic Hydrogel: Tuning of Gel Recovery Time by Mechanical Shaking

[1]  I. Hamley,et al.  Amyloid and Hydrogel Formation of a Peptide Sequence from a Coronavirus Spike Protein , 2022, ACS Nano.

[2]  D. Adams,et al.  Controlling Syneresis of Hydrogels Using Organic Salts , 2021, Angewandte Chemie.

[3]  Bart Jan Ravoo,et al.  Brennstoffbetriebene und enzymregulierte redoxresponsive supramolekulare Hydrogele , 2021, Angewandte Chemie.

[4]  S. Pati,et al.  Light‐Harvesting Supramolecular Phosphors: Highly Efficient Room Temperature Phosphorescence in Solution and Hydrogels , 2021, Angewandte Chemie.

[5]  Mehak Jain,et al.  Fuel‐Driven and Enzyme‐Regulated Redox‐Responsive Supramolecular Hydrogels , 2021, Angewandte Chemie.

[6]  S. Pati,et al.  Light-Harvesting Supramolecular Phosphors: Highly Efficient Room Temperature Phosphorescence in Solution and Hydrogels. , 2021, Angewandte Chemie.

[7]  Eric A. Appel,et al.  Translational Applications of Hydrogels , 2021, Chemical reviews.

[8]  A. Walther,et al.  Wellenlängengesteuerte Adaption der Hydrogeleigenschaften durch Photodynamische Multivalenz in Assoziierenden Sternpolymeren , 2021 .

[9]  J. Burdick,et al.  Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. , 2020, Chemical reviews.

[10]  A. Walther,et al.  Wavelength‐Gated Adaptation of Hydrogel Properties via Photo‐Dynamic Multivalency in Associative Star Polymers , 2020, Angewandte Chemie.

[11]  E. Prasad,et al.  Cyanide Sensing in Water Using a Copper Metallogel through "Turn-on" Fluorescence. , 2020, Langmuir : the ACS journal of surfaces and colloids.

[12]  M. Kumar,et al.  Self-Assembly Propensity Dictates Lifetimes in Transient Naphthalimide-dipeptide Nanofibers. , 2020, Chemistry.

[13]  S. Jia,et al.  Structure-Dependent Antibacterial Activity of Amino Acid-Based Supramolecular Hydrogels. , 2020, Colloids and surfaces. B, Biointerfaces.

[14]  Apurba K. Das,et al.  Evaluation of a Peptide-Based Coassembled Nanofibrous and Thixotropic Hydrogel for Dermal Wound Healing. , 2020, ACS applied bio materials.

[15]  D. Das,et al.  pH and secondary structure instructed aggregation to a thixotropic hydrogel by a peptide amphiphile , 2020, Bulletin of Materials Science.

[16]  G. Falini,et al.  Supramolecular Hydrogels with Properties Tunable by Calcium Ions: A Bio-Inspired Chemical System , 2019 .

[17]  B. Satpati,et al.  Supramolecular Hydrogel from an Oxidized Byproduct of Tyrosine. , 2019, ACS applied bio materials.

[18]  L. Gentilucci,et al.  Thixotropic Peptide-Based Physical Hydrogels Applied to Three-Dimensional Cell Culture , 2017, ACS omega.

[19]  D. Hermida-Merino,et al.  A Peptide-Based Mechano-sensitive, Proteolytically Stable Hydrogel with Remarkable Antibacterial Properties. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[20]  P. Bairi,et al.  Integration of poly(ethylene glycol) in N-fluorenylmethoxycarbonyl-l-tryptophan hydrogel influencing mechanical, thixotropic, and release properties. , 2015, The journal of physical chemistry. B.

[21]  E. W. Meijer,et al.  Mechanically Induced Gelation of a Kinetically Trapped Supramolecular Polymer , 2014 .

[22]  Surajit Ghosh,et al.  Assembly of an injectable noncytotoxic peptide-based hydrogelator for sustained release of drugs. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[23]  A. Banerjee,et al.  An amino-acid-based self-healing hydrogel: modulation of the self-healing properties by incorporating carbon-based nanomaterials. , 2013, Chemistry.

[24]  B. Feringa,et al.  Mechanically induced gel formation. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[25]  A. Biswas,et al.  Single amino acid based thixotropic hydrogel formation and pH-dependent morphological change of gel nanofibers , 2013 .

[26]  A. Banerjee,et al.  Amino acid based smart hydrogel: formation, characterization and fluorescence properties of silver nanoclusters within the hydrogel matrix , 2011 .