Proposed prediction algorithms based on hybrid approach to deal with anomalies of RFID data in healthcare

Abstract The RFID technology has penetrated the healthcare sector due to its increased functionality, low cost, high reliability, and easy-to-use capabilities. It is being deployed for various applications and the data captured by RFID readers increase according to timestamp resulting in an enormous volume of data duplication, false positive, and false negative. The dirty data stream generated by the RFID readers is one of the main factors limiting the widespread adoption of RFID technology. In order to provide reliable data to RFID application, it is necessary to clean the collected data and this should be done in an effective manner before they are subjected to warehousing. The existing approaches to deal with anomalies are physical, middleware, and deferred approach. The shortcomings of existing approaches are analyzed and found that robust RFID system can be built by integrating the middleware and deferred approach. Our proposed algorithms based on hybrid approach are tested in the healthcare environment which predicts false positive, false negative, and redundant data. In this paper, healthcare environment is simulated using RFID and the data observed by RFID reader consist of anomalies false positive, false negative, and duplication. Experimental evaluation shows that our cleansing methods remove errors in RFID data more accurately and efficiently. Thus, with the aid of the planned data cleaning technique, we can bring down the healthcare costs, optimize business processes, streamline patient identification processes, and improve patient safety.