Simulation-Aided Process Chain Design for the Manufacturing of Hybrid Shafts

Abstract Researchers of the Collaborative Research Centre CRC 1153 are investigating novel process chains to manufacture function-adapted and lightweight machine components. In each step of the process chain, numerical simulation tools are utilised in the process design to take into account locally specific material behaviour under particular processing conditions. In this paper, solution approaches associated with the modelling of manufacturing processes are presented.

[1]  Bernd-Arno Behrens,et al.  Experimental investigations on the state of the friction-welded joint zone in steel hybrid components after process-relevant thermo-mechanical loadings , 2016 .

[2]  J. Buriánek,et al.  Determination of thermal diffusivity and thermal conductivity of Fe-Al alloys in the concentration range 22 to 50 at.% Al , 2001 .

[3]  Paul Christoph Gembarski,et al.  Design catalogue in a CAE environment for the illustration of tailored forming , 2017 .

[4]  Michael R Wisnom,et al.  A combined stress-based and fracture-mechanics-based model for predicting delamination in composites , 1993 .

[5]  Sebastian Herbst,et al.  Determination of heat transfer coefficients for complex spray cooling arrangements , 2016 .

[6]  Erik Kaestner,et al.  The Mechanical Design Process , 2016 .

[7]  J. Lemaître,et al.  Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures , 2005 .

[8]  Wolfgang Bleck,et al.  Micromechanical modelling of damage behaviour of multiphase steels , 2008 .

[9]  Sebastian Herbst,et al.  Microstructure and mechanical properties of friction welded steel-aluminum hybrid components after T6 heat treatment , 2017 .

[10]  Peter Wriggers,et al.  Internal Thickness Extrapolation , 2018, PAMM.

[11]  Robert C. Goldstein,et al.  Hot Hydroforging for Lightweighting , 2015 .

[12]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[13]  Alexander Dauensteiner Karosseriewerkstoffe auf dem Weg zum Ein-Liter-Auto , 2002 .

[14]  Cazacu Razvan OVERVIEW OF STRUCTURAL TOPOLOGY OPTIMIZATION METHODS FOR PLANE AND SOLID STRUCTURES , 2014 .

[15]  Ekkard Brinksmeier,et al.  Influence of Different Machining Conditions on the Subsurface Properties of Drilled TiAl6V4 , 2016 .

[16]  Berend Denkena,et al.  Cutting edge geometries , 2014 .

[17]  Bernd Findeisen,et al.  Leichtmetall-Zylinderkurbelgehäuse mit Stützstrukturen , 2000 .

[18]  N. Saunders,et al.  Using JMatPro to model materials properties and behavior , 2003 .

[19]  Bernard Nacke,et al.  Ein Verfahren zur numerischen Simulation induktiver Erwärmungsprozesse und dessen technische Anwendung , 1987 .

[20]  Rolf Steinhilper,et al.  Integrating New Technologies and Materials by Reengineering : Selected Case Study Results , 2016 .

[21]  Roland Lachmayer,et al.  An interfacial zone evolutionary optimization method with manufacturing constraints for hybrid components , 2018, J. Comput. Des. Eng..

[22]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .