Big Data in Finance

[1]  Siem Jan Koopman,et al.  Forecasting Daily Variability of the S&P 100 Stock Index Using Historical, Realised and Implied Volatility Measurements , 2005 .

[2]  Yacine Ait-Sahalia,et al.  High Frequency Traders: Taking Advantage of Speed , 2013 .

[3]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[4]  P. Hansen,et al.  Realized Variance and Market Microstructure Noise , 2005 .

[5]  Thanos Verousis,et al.  An improved algorithm for cleaning Ultra High-Frequency data , 2010 .

[6]  Andrea Beltratti,et al.  Statistical Benefits of Value-At-Risk with Long Memory , 2005 .

[7]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[8]  Michael McAleer,et al.  Realized Volatility: A Review , 2008 .

[9]  Qiwei Yao,et al.  Large Volatility Matrix Inference via Combining Low-Frequency and High-Frequency Approaches , 2011 .

[10]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[11]  C. Gouriéroux ARCH Models and Financial Applications , 1997 .

[12]  Yacine Ait-Sahalia,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[13]  P. Franses,et al.  Forecasting stock market volatility using (non‐linear) Garch models , 1996 .

[14]  Tim Bollerslev,et al.  Tails, Fears and Risk Premia , 2009 .

[15]  E. Ghysels,et al.  Série Scientifique Scientific Series Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies , 2022 .

[16]  Neil Shephard,et al.  Multivariate High-Frequency-Based Volatility (HEAVY) Models , 2012 .

[17]  H. P. Boswijk,et al.  Estimating spot volatility with high-frequency financial data , 2014 .

[18]  Rosario Bartiromo Maximum entropy distribution of stock price fluctuations , 2011 .

[19]  T. Bollerslev,et al.  Deutsche Mark–Dollar Volatility: Intraday Activity Patterns, Macroeconomic Announcements, and Longer Run Dependencies , 1998 .

[20]  Nikolaus Hautsch,et al.  A Blocking and Regularization Approach to High Dimensional Realized Covariance Estimation , 2010 .

[21]  Lan Zhang Estimating Covariation: Epps Effect, Microstructure Noise , 2006 .

[22]  Georgios Chortareas,et al.  Forecasting exchange rate volatility using high-frequency data: Is the euro different? , 2011 .

[23]  J. R. Ward,et al.  Fractals and Intrinsic Time - a Challenge to Econometricians , 1999 .

[24]  P. Hansen,et al.  Realized GARCH: A Joint Model of Returns and Realized Measures of Volatility , 2010 .

[25]  T. Bollerslev,et al.  Continuous-Time Models, Realized Volatilities, and Testable Distributional Implications for Daily Stock Returns , 2007 .

[26]  E. Ghysels,et al.  Volatility Forecasting and Microstructure Noise , 2006 .

[27]  Dimitrios P. Louzis,et al.  The Role of High Frequency Intra-Daily Data, Daily Range and Implied Volatility in Multi-Period Value-at-Risk Forecasting , 2011 .

[28]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[29]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[30]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[31]  L. Harris Estimation of Stock Price Variances and Serial Covariances from Discrete Observations , 1990 .

[32]  Federico M. Bandi,et al.  Microstructure Noise, Realized Variance, and Optimal Sampling , 2008 .

[33]  Dick van Dijk,et al.  Forecasting S&P 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements , 2009 .

[34]  T. W. Epps Comovements in Stock Prices in the Very Short Run , 1979 .

[35]  Jianqing Fan,et al.  Spot volatility estimation for high-frequency data ∗ , 2008 .

[36]  Minjing Tao,et al.  FAST CONVERGENCE RATES IN ESTIMATING LARGE VOLATILITY MATRICES USING HIGH-FREQUENCY FINANCIAL DATA , 2013, Econometric Theory.

[37]  Y. Z. Wang,et al.  Asymptotic nonequivalence of GARCH models and di?usions , 2002 .

[38]  N. Yoshida,et al.  On covariance estimation of non-synchronously observed diffusion processes , 2005 .

[39]  Joachim Grammig,et al.  Modeling the interdependence of volatility and inter-transaction duration processes , 2002 .

[40]  T. Ouarda,et al.  Generalized autoregressive conditional heteroscedasticity modelling of hydrologic time series , 2012 .

[41]  Jean Jacod,et al.  Asymptotic properties of realized power variations and related functionals of semimartingales , 2006, math/0604450.

[42]  Christian T. Brownlees,et al.  Financial Econometric Analysis at Ultra-High Frequency: Data Handling Concerns , 2006, Comput. Stat. Data Anal..

[43]  Charles S. Bos,et al.  Spot Variance Path Estimation and Its Application to High Frequency Jump Testing , 2009 .

[44]  Luis A. Gil-Alana,et al.  Suitability of Volatility Models for Forecasting Stock Market Returns: A Study on the Indian National Stock Exchange , 2010 .

[45]  N. Shephard,et al.  Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation , 2005 .

[46]  Alex Nazaruk,et al.  Big data in capital markets , 2013, SIGMOD '13.

[47]  Yong Zeng A Partially Observed Model for Micromovement of Asset Prices with Bayes Estimation via Filtering , 2003 .

[48]  Ser-Huang Poon,et al.  Forecasting Financial Market Volatility: A Review , 2001 .

[49]  Lawrence Fisher,et al.  Some New Stock-Market Indexes , 1966 .

[50]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[51]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[52]  Dennis Kristensen,et al.  NONPARAMETRIC FILTERING OF THE REALIZED SPOT VOLATILITY: A KERNEL-BASED APPROACH , 2007, Econometric Theory.

[53]  T. Brailsford,et al.  An evaluation of volatility forecasting techniques , 1996 .

[54]  J. Griffin,et al.  Covariance Measurement in the Presence of Non-Synchronous Trading and Market Microstructure Noise , 2009 .

[55]  D. Dijk,et al.  Measuring volatility with the realized range , 2006 .

[56]  P. Protter,et al.  Asymptotic error distributions for the Euler method for stochastic differential equations , 1998 .

[57]  Jeffrey R. Russell,et al.  Realized covariation , realized beta , and microstructure noise , 2005 .

[58]  Georgios P. Kouretas,et al.  Forecasting financial volatility of the Athens stock exchange daily returns: an application of the asymmetric normal mixture GARCH model , 2010 .

[59]  Jeffrey R. Russell,et al.  Using High-Frequency Data in Dynamic Portfolio Choice , 2008 .

[60]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[61]  Clifford S. Ang High-Frequency Trading and Price Discovery , 2015 .

[62]  Hao Zhou,et al.  Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities , 2004 .

[63]  Thomas H. McCurdy,et al.  Do High-Frequency Measures of Volatility Improve Forecasts of Return Distributions? , 2008 .

[64]  V. Akgiray Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts , 1989 .

[65]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[66]  Yu-Min Lian,et al.  Forecasting Value-at-Risk using high frequency data: The realized range model , 2009 .

[67]  Neil Shephard,et al.  Realising the future: forecasting with high frequency based volatility (HEAVY) models , 2010 .

[68]  George Tauchen,et al.  Cross-Stock Comparisons of the Relative Contribution of Jumps to Total Price Variance , 2012 .

[69]  Álvaro Cartea,et al.  Volatility and Covariation of Financial Assets: A High-Frequency Analysis , 2011 .

[70]  N. Shephard,et al.  Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics , 2004 .

[71]  F. Comte,et al.  Long memory in continuous‐time stochastic volatility models , 1998 .

[72]  Jean Jacod,et al.  Volatility estimators for discretely sampled Lévy processes , 2007 .

[73]  N. Meddahi,et al.  A theoretical comparison between integrated and realized volatility , 2002 .

[74]  Neil Shephard,et al.  Designing Realised Kernels to Measure the Ex-Post Variation of Equity Prices in the Presence of Noise , 2008 .

[75]  Jan C. Neddermeyer,et al.  Online Spot Volatility-Estimation and Decomposition with Nonlinear Market Microstructure Noise Models , 2010, 1006.1860.

[76]  Jialin Yu,et al.  High Frequency Market Microstructure Noise Estimates and Liquidity Measures , 2009 .

[77]  H. Müller,et al.  Functional data analysis for volatility , 2011 .

[78]  R. Engle,et al.  A Permanent and Transitory Component Model of Stock Return Volatility , 1993 .

[79]  L. Ederington,et al.  Forecasting Volatility , 2004 .

[80]  Hong Miao Potential Applications of Function Data Analysis in High-frequency Financial Research , 2013 .

[81]  Ke Yu,et al.  Journal of the American Statistical Association Vast Volatility Matrix Estimation Using High- Frequency Data for Portfolio Selection Vast Volatility Matrix Estimation Using High-frequency Data for Portfolio Selection , 2022 .

[82]  N. Shephard,et al.  Subsampling Realised Kernels , 2007 .

[83]  N. Shephard,et al.  Estimating quadratic variation using realized variance , 2002 .

[84]  Kim Christensen,et al.  Realized Range-Based Estimation of Integrated Variance , 2006 .

[85]  T. Bollerslev,et al.  Expected Stock Returns and Variance Risk Premia , 2009 .

[86]  Tim Bollerslev,et al.  High Frequency Data, Frequency Domain Inference and Volatility Forecasting , 1999 .

[87]  Stavros Degiannakis,et al.  Volatility forecasting: intra-day versus inter-day models , 2008 .

[88]  S. Laurent,et al.  Modelling Daily Value-at-Risk Using Realized Volatility and Arch Type Models , 2001 .

[89]  Mark Podolskij,et al.  Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps , 2006 .

[90]  M. Michael Where have you been all my life , 1994 .

[91]  Lan Zhang Efficient Estimation of Stochastic Volatility Using Noisy Observations: A Multi-Scale Approach , 2004, math/0411397.

[92]  Robert I. Webb,et al.  Market microstructure effects on volatility at the TAIFEX , 2007 .

[93]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[94]  Emilio Barucci,et al.  Fourier volatility forecasting with high-frequency data and microstructure noise , 2012 .

[95]  Christian M. Hafner,et al.  Cross-correlating wavelet coefficients with applications to high-frequency financial time series , 2012 .

[96]  T. Bollerslev,et al.  Analytical Evaluation of Volatility Forecasts , 2002 .

[97]  Dimitrios P. Louzis,et al.  Are Realized Volatility Models Good Candidates for Alternative Value at Risk Prediction Strategies? , 2011 .

[98]  A. Lunde,et al.  Integrated Covariance Estimation using High-frequency Data in the Presence of Noise , 2006 .

[99]  Tim Bollerslev,et al.  Jumps and Betas: A New Framework for Disentangling and Estimating Systematic Risks , 2007 .

[100]  Axel Munk,et al.  Nonparametric Estimation of the Volatility Function in a High-Frequency Model corrupted by Noise , 2009, 0908.3163.

[101]  Karim Bannouh,et al.  Measuring and Forecasting Financial Market Volatility using High-Frequency Data , 2006 .

[102]  Mark D. Flood,et al.  Monitoring Financial Stability in a Complex World , 2012 .

[103]  N. Shephard Statistical aspects of ARCH and stochastic volatility , 1996 .

[104]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[105]  Giampiero M. Gallo,et al.  Comparison of Volatility Measures: A Risk Management Perspective , 2009 .

[106]  Robert F. Engle,et al.  The Econometrics of Ultra-High Frequency Data , 1996 .

[107]  Torben G. Andersen,et al.  Correcting the errors: Volatility forecast evaluation using high-frequency data and realized volatilities , 2005 .

[108]  Michael Sørensen,et al.  Estimating functions for diffusion-type processes , 2012 .

[109]  Jean Jacod,et al.  Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9 , 2007 .

[110]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[111]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[112]  M. Martens Estimating Unbiased and Precise Realized Covariances , 2004 .

[113]  Jean Jacod,et al.  A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales , 2004 .