A flexible classification approach with optimal generalisation performance: support vector machines

[1]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[2]  Wei-Yin Loh,et al.  A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms , 2000, Machine Learning.

[3]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[4]  A. Belousov,et al.  Applicational aspects of support vector machines , 2002 .

[5]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[6]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[7]  Nello Cristianini,et al.  Support vector machine classification and validation of cancer tissue samples using microarray expression data , 2000, Bioinform..

[8]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[9]  D Haussler,et al.  Knowledge-based analysis of microarray gene expression data by using support vector machines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[11]  Sarunas Raudys How good are support vector machines? , 2000, Neural Networks.

[12]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Robert P. W. Duin,et al.  Support vector domain description , 1999, Pattern Recognit. Lett..

[14]  Robert P. W. Duin,et al.  Pump Failure Detection Using Support Vector Data Descriptions , 1999, IDA.

[15]  Jill P. Mesirov,et al.  Computational Biology , 2018, Encyclopedia of Parallel Computing.

[16]  B. Schölkopf,et al.  Advances in kernel methods: support vector learning , 1999 .

[17]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[18]  S. D. Jong,et al.  Handbook of Chemometrics and Qualimetrics , 1998 .

[19]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[20]  Johanna Smeyers-Verbeke,et al.  Handbook of Chemometrics and Qualimetrics: Part A , 1997 .

[21]  Bernhard Schölkopf,et al.  Support vector learning , 1997 .

[22]  Desire L. Massart,et al.  Comparison of regularized discriminant analysis linear discriminant analysis and quadratic discriminant analysis applied to NIR data , 1996 .

[23]  Christopher M. Bishop,et al.  Modelling conditional probability distributions for periodic variables , 1995 .

[24]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[25]  Danny Coomans,et al.  Improvements to the classification performance of RDA , 1993 .

[26]  Anil K. Jain,et al.  Small Sample Size Effects in Statistical Pattern Recognition: Recommendations for Practitioners , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  L. N. Kanal,et al.  Uncertainty in Artificial Intelligence 5 , 1990 .

[28]  J. Friedman Regularized Discriminant Analysis , 1989 .

[29]  Desire L. Massart,et al.  Evaluation of the required sample size in some supervised pattern recognition techniques , 1989 .

[30]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[31]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .