From gapped excitons to gapless triplons in one dimension

[1]  G. Uhrig,et al.  Dispersive excitations in one-dimensional ionic Hubbard model , 2014, 1403.2405.

[2]  G. Uhrig,et al.  Multiparticle spectral properties in the transverse field Ising model by continuous unitary transformations , 2013, 1302.0230.

[3]  Y. Tokura,et al.  Electronic ferroelectricity in a molecular crystal with large polarization directing antiparallel to ionic displacement. , 2012, Physical review letters.

[4]  G. Uhrig,et al.  Enhanced Perturbative Continuous Unitary Transformations , 2012, 1202.3121.

[5]  M. Abolhassani,et al.  Dynamics in the one-dimensional extended ionic Hubbard model , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  G. Uhrig,et al.  Hole dispersions for antiferromagnetic spin-\hbox{$\frac{1}{2}$}12 two-leg ladders by self-similar continuous unitary transformations , 2011, 1103.0162.

[7]  K. Schmidt,et al.  Effective models for gapped phases of strongly correlated quantum lattice models , 2010, 1009.0210.

[8]  Hai-Qing Lin,et al.  Bond-located spin density wave phase in the two-dimensional (2D) ionic Hubbard model , 2010 .

[9]  F. Mila,et al.  Effective spin model for the spin-liquid phase of the Hubbard model on the triangular lattice. , 2010, Physical review letters.

[10]  S. Jafari,et al.  Excitation spectrum of one-dimensional extended ionic Hubbard model , 2010, 1004.4265.

[11]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[12]  G. Uhrig,et al.  Adapted continuous unitary transformation to treat systems with quasi-particles of finite lifetime , 2009, 0911.5007.

[13]  D. Baeriswyl,et al.  Critical properties of the band-insulator-to-Mott-insulator transition in the strong-coupling limit of the ionic Hubbard model , 2009, 0902.1057.

[14]  R. Hayn,et al.  Electronic phase transitions in the half-filled ionic Hubbard model , 2007, cond-mat/0703814.

[15]  S. Nishimoto,et al.  Phase diagram of the one-dimensional half-filled extended Hubbard model. , 2007, Physical review letters.

[16]  E. Dagotto,et al.  Correlated insulated phase suggests bond order between band and mott insulators in two dimensions. , 2007, Physical review letters.

[17]  R. Scalettar,et al.  Quantum Monte Carlo study of an interaction-driven band-insulator-to-metal transition. , 2006, Physical review letters.

[18]  S. Kehrein The Flow Equation Approach to Many-Particle Systems , 2006 .

[19]  Jaan Oitmaa,et al.  Series Expansion Methods for Strongly Interacting Lattice Models: Introduction , 2006 .

[20]  H. R. Krishnamurthy,et al.  Can correlations drive a band insulator metallic? , 2005, Physical review letters.

[21]  H. Otsuka,et al.  Ground-state phase diagram of the one-dimensional Hubbard model with an alternating chemical potential , 2004, cond-mat/0403630.

[22]  S. Dusuel,et al.  The quartic oscillator: a non-perturbative study by continuous unitary transformations , 2004, cond-mat/0405166.

[23]  V. Meden,et al.  Quantum critical behavior of the one-dimensional ionic Hubbard model , 2003, cond-mat/0307741.

[24]  G. Uhrig,et al.  High order perturbation theory for spectral densities of multi-particle excitations: $\mathsf{S = \frac{1}{2}}$ two-leg Heisenberg ladder , 2003, cond-mat/0312246.

[25]  M. Stoitsov,et al.  Density matrix renormalization group study of critical behavior of thespin−12alternating Heisenberg chain , 2003 .

[26]  P. Brune,et al.  Nature of the insulating phases in the half-filled ionic Hubbard model , 2003, cond-mat/0304697.

[27]  G. Uhrig,et al.  Excitations in one-dimensional S = 1/2 quantum antiferromagnets. , 2002, Physical review letters.

[28]  A. Aligia,et al.  Phase diagram of the Hubbard chain with two atoms per cell , 2001, cond-mat/0107222.

[29]  C. Hamer,et al.  Linked cluster series expansions for two-particle bound states , 2000, cond-mat/0010354.

[30]  C. Hamer,et al.  Deconfinement transition and bound states in frustrated Heisenberg chains: Regimes of forced and spontaneous dimerization , 2000, cond-mat/0010243.

[31]  R. Martin,et al.  Quantum Monte Carlo study of the one-dimensional ionic Hubbard model , 2000, cond-mat/0007472.

[32]  M. Nakamura Tricritical behavior in the extended Hubbard chains , 1999, cond-mat/9909277.

[33]  G. Uhrig,et al.  Perturbation theory by flow equations: dimerized and frustrated S = 1/2 chain , 1999, cond-mat/9906243.

[34]  F. Gebhard The Mott Metal-Insulator Transition , 2000 .

[35]  M. Fabrizio,et al.  From Band Insulator to Mott Insulator in One Dimension , 1999, cond-mat/9904319.

[36]  A. Tsvelik,et al.  Bosonization and Strongly Correlated Systems , 1999, cond-mat/9909069.

[37]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[38]  F. Schönfeld,et al.  Unified quantum mechanical picture for confined spinons in dimerized and frustrated spin chains , 1998, cond-mat/9805245.

[39]  G. Muller,et al.  Two-spinon dynamic structure factor of the one-dimensional s= Heisenberg antiferromagnet , 1996, cond-mat/9606068.

[40]  F. Wegner FLOW EQUATIONS FOR HAMILTONIANS , 1998 .

[41]  A. Auerbach Interacting electrons and quantum magnetism , 1994 .

[42]  S. Ishihara,et al.  Lattice Effect of Strong Electron Correlation: Implication for Ferroelectricity and Superconductivity , 1993, Science.

[43]  N. Nagaosa,et al.  Theory of Neutral-Ionic Transition in Organic Crystals. I. Monte Carlo Simulation of Modified Hubbard Model , 1986 .

[44]  L. Takhtajan,et al.  What is the spin of a spin wave , 1981 .

[45]  H. Thomas,et al.  Quantum spin dynamics of the antiferromagnetic linear chain in zero and nonzero magnetic field , 1981 .

[46]  V. Lee,et al.  Discovery of a Neutral-to-Ionic Phase Transition in Organic Materials , 1981 .

[47]  M. Cross,et al.  A new theory of the spin-Peierls transition with special relevance to the experiments on TTFCuBDT , 1979 .

[48]  S. Mazumdar,et al.  Neutral-ionic interface in organic charge-transfer salts , 1978 .

[49]  P. Strebel,et al.  Theory of Charge Transfer in Aromatic Donor–Acceptor Crystals , 1970 .

[50]  J. D. Cloizeaux,et al.  Spin-Wave Spectrum of the Antiferromagnetic Linear Chain , 1962 .