Template-Free Synthesis of a Highly Porous Benzimidazole-Linked Polymer for CO2 Capture and H2 Storage

A highly porous benzimidazole-linked polymer (SABET 1172 m2/g) exhibits very high gas selectivity CO2/N2 (70) and CO2/CH4 (10) and can store CO2 (19 wt %, 273 K, 1 bar) and H2 (1.9 wt %, 77 K, 1 bar) with Qst values of 26.7 and 7.9 kJ/mol, respectively.

[1]  Michael O’Keeffe,et al.  A crystalline imine-linked 3-D porous covalent organic framework. , 2009, Journal of the American Chemical Society.

[2]  Neil B. McKeown,et al.  Exploitation of Intrinsic Microporosity in Polymer-Based Materials , 2010 .

[3]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[4]  M. Antonietti,et al.  Mesoporous poly(benzimidazole) networks via solvent mediated templating of hard spheres , 2007 .

[5]  Hong-Cai Zhou,et al.  Gas storage in porous metal-organic frameworks for clean energy applications. , 2010, Chemical communications.

[6]  Rajamani Krishna,et al.  Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation , 2010 .

[7]  Jingui Duan,et al.  Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups. , 2011, Journal of the American Chemical Society.

[8]  Bo Wang,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[9]  M. Antonietti,et al.  Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. , 2010, Chemical communications.

[10]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[11]  G. Robertson,et al.  Polymers of Intrinsic Microporosity with Dinaphthyl and Thianthrene Segments , 2010 .

[12]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[13]  A. Slawin,et al.  Porous organic cages. , 2009, Nature materials.

[14]  Arne Thomas,et al.  Proton Conductivity Enhancement by Nanostructural Control of Poly(benzimidazole)‐Phosphoric Acid Adducts , 2008 .

[15]  J. Lewiński,et al.  Cinchona alkaloid-metal complexes: noncovalent porous materials with unique gas separation properties. , 2010, Angewandte Chemie.

[16]  R. Banerjee,et al.  Amino functionalized zeolitic tetrazolate framework (ZTF) with high capacity for storage of carbon dioxide. , 2011, Chemical communications.

[17]  Till von Graberg,et al.  Electrospun Silica—Polybenzimidazole Nanocomposite Fibers , 2008 .

[18]  R. Bouchet,et al.  Proton conduction in acid doped polybenzimidazole , 1999 .

[19]  Wenchuan Wang,et al.  Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. , 2009, Angewandte Chemie.

[20]  Graham de Ruiter,et al.  Inside Cover: Sequential Logic Operations with Surface‐Confined Polypyridyl Complexes Displaying Molecular Random Access Memory Features (Angew. Chem. Int. Ed. 1/2010) , 2010 .

[21]  M. O'keeffe,et al.  Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs , 2008, Nature.

[22]  J. Weber Nanostructured poly(benzimidazole): from mesoporous networks to nanofibers. , 2010, ChemSusChem.

[23]  S. Nguyen,et al.  Imine-Linked Microporous Polymer Organic Frameworks , 2010 .

[24]  Peter G. Boyd,et al.  Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid , 2010, Science.

[25]  Jihyun An,et al.  High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. , 2010, Journal of the American Chemical Society.

[26]  R. Marcilla,et al.  Porous Polybenzimidazole Membranes Doped with Phosphoric Acid: Highly Proton-Conducting Solid Electrolytes , 2004 .

[27]  Alexander M. Spokoyny,et al.  Synthesis, Properties, and Gas Separation Studies of a Robust Diimide-Based Microporous Organic Polymer , 2009 .

[28]  Alírio E. Rodrigues,et al.  Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures , 2004 .

[29]  M. Morsy,et al.  Normal Vibrational Mode Analysis and Assignment of Benzimidazole by ab Initio and Density Functional Calculations and Polarized Infrared and Raman Spectroscopy , 2002 .

[30]  Michael O'Keeffe,et al.  Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. , 2010, Accounts of chemical research.

[31]  Gary T. Rochelle,et al.  Amine Scrubbing for CO2 Capture , 2009, Science.

[32]  Markus Antonietti,et al.  Porous polymers: enabling solutions for energy applications. , 2009, Macromolecular rapid communications.

[33]  Omar M Yaghi,et al.  Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. , 2009, Journal of the American Chemical Society.

[34]  Bjørnar Arstad,et al.  Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide , 2008 .

[35]  Shubo Wang,et al.  Novel method for the preparation of ionically crosslinked sulfonated poly(arylene ether sulfone)/polybenzimidazole composite membranes via in situ polymerization , 2010 .

[36]  Lixian Sun,et al.  Microporous polyimide networks with large surface areas and their hydrogen storage properties. , 2010, Chemical communications.

[37]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[38]  Omar M. Yaghi,et al.  Reticular synthesis of covalent organic borosilicate frameworks. , 2008, Journal of the American Chemical Society.

[39]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[40]  Lihu Yang,et al.  A simple and efficient procedure for the synthesis of benzimidazoles using air as the oxidant , 2005 .

[41]  Omar M Yaghi,et al.  Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. , 2007, Journal of the American Chemical Society.

[42]  K. Harris,et al.  Triptycene-based polymers of intrinsic microporosity: organic materials that can be tailored for gas adsorption , 2010 .

[43]  Seda Keskin,et al.  Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? , 2010, ChemSusChem.

[44]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[45]  G. Shimizu,et al.  An amine-functionalized metal organic framework for preferential CO(2) adsorption at low pressures. , 2009, Chemical communications.

[46]  E. Neuse,et al.  Two-stage polybenzimidazole synthesis via poly(azomethine) intermediates , 1983 .

[47]  Pedro Gómez-Romero,et al.  Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. , 2010, Chemical Society reviews.