SyncScatter: Enabling WiFi like synchronization and range for WiFi backscatter Communication

WiFi backscattering can enable direct connectivity of IoT devices with commodity WiFi hardware at low power. However, most existing work in this area has overlooked the importance of synchronization and, as a result, accepted either limited range between the transmitter and the IoT device, reduced throughput via bit repetition, or both. In this paper, we present SyncScatter, which achieves accurate synchronization with incident signals at the IoT device level while realizing maximum possible sensitivity afforded by a backscatter link budget. SyncScatter creates a novel modeling framework and derives the maximal optimal range and synchronization error that the receiver can tolerate without significant performance compromises. Next, SyncScatter builds a novel hierarchical wake-up protocol, which, together with a custom ASIC, achieves a range of 30+ meters and the peak throughput of 500Kbps, with an average power consumption of 30μW.

[1]  Sachin Katti,et al.  FreeRider: Backscatter Communication Using Commodity Radios , 2017, CoNEXT.

[2]  Jiangchuan Liu,et al.  Spatial Stream Backscatter Using Commodity WiFi , 2018, MobiSys.

[3]  Matthew S. Reynolds,et al.  Every smart phone is a backscatter reader: Modulated backscatter compatibility with Bluetooth 4.0 Low Energy (BLE) devices , 2015, 2015 IEEE International Conference on RFID (RFID).

[4]  Mohammad Rostami,et al.  Enabling Practical Backscatter Communication for On-body Sensors , 2016, SIGCOMM.

[5]  Rashad Ramzan,et al.  2.4GHz WLAN RF energy harvester for passive indoor sensor nodes , 2014, 2014 IEEE International Conference on Semiconductor Electronics (ICSE2014).

[6]  Ali Najafi,et al.  NetScatter: Enabling Large-Scale Backscatter Networks , 2018, NSDI.

[7]  Qian Zhang,et al.  NICScatter: Backscatter as a Covert Channel in Mobile Devices , 2017, MobiCom.

[8]  Kevin Fu,et al.  On the limits of effective hybrid micro-energy harvesting on mobile CRFID sensors , 2010, MobiSys '10.

[9]  S. J. Thomas,et al.  A 96 Mbit/sec, 15.5 pJ/bit 16-QAM modulator for UHF backscatter communication , 2012, 2012 IEEE International Conference on RFID (RFID).

[10]  Benjamin Ransford,et al.  Moo : A Batteryless Computational RFID and Sensing Platform , 2011 .

[11]  Xin Liu,et al.  Passive-ZigBee: Enabling ZigBee Communication in IoT Networks with 1000X+ Less Power Consumption , 2018, SenSys.

[13]  Patrick P. Mercier,et al.  A Low-Power Backscatter Modulation System Communicating Across Tens of Meters With Standards-Compliant Wi-Fi Transceivers , 2020, IEEE Journal of Solid-State Circuits.

[14]  Guido Dolmans,et al.  Noise and Sensitivity in RF Envelope Detection Receivers , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.

[15]  Joshua R. Smith,et al.  Inter-Technology Backscatter: Towards Internet Connectivity for Implanted Devices , 2016, SIGCOMM.

[16]  Jiangchuan Liu,et al.  X-Tandem: Towards Multi-hop Backscatter Communication with Commodity WiFi , 2018, MobiCom.

[17]  Piotr Indyk,et al.  Efficient and reliable low-power backscatter networks , 2012, CCRV.

[18]  Joshua R. Smith,et al.  Design of a Passively-Powered, Programmable Sensing Platform for UHF RFID Systems , 2007, 2007 IEEE International Conference on RFID.

[19]  Pan Hu,et al.  EkhoNet: High-Speed Ultra Low-Power Backscatter for Next Generation Sensors , 2015, GETMBL.

[20]  Sachin Katti,et al.  BackFi: High Throughput WiFi Backscatter , 2015, SIGCOMM.

[21]  Joshua R. Smith,et al.  LoRa Backscatter: Enabling The Vision of Ubiquitous Connectivity , 2017 .

[22]  Deepak Ganesan,et al.  Flit: a bulk transmission protocol for RFID-scale sensors , 2012, MobiSys '12.

[23]  David Wetherall,et al.  Dewdrop: An Energy-Aware Runtime for Computational RFID , 2011, NSDI.

[24]  Joshua R. Smith,et al.  FM Backscatter: Enabling Connected Cities and Smart Fabrics , 2017, NSDI.

[25]  Xiaojiang Chen,et al.  PLoRa: a passive long-range data network from ambient LoRa transmissions , 2018, SIGCOMM.

[26]  Joshua R. Smith,et al.  Towards Battery-Free HD Video Streaming , 2018, NSDI.

[27]  Steve Lazar,et al.  A Passive UHF RFID Transponder for EPC Gen 2 with -14dBm Sensitivity in 0.13μm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[28]  Yao Yao,et al.  Leveraging Ambient LTE Traffic for Ubiquitous Passive Communication , 2020, SIGCOMM.

[29]  Sachin Katti,et al.  HitchHike: Practical Backscatter Using Commodity WiFi , 2016, SenSys.

[30]  Omid Salehi-Abari,et al.  In-body backscatter communication and localization , 2018, SIGCOMM.

[31]  Guobin Shen,et al.  PassiveVLC: Enabling Practical Visible Light Backscatter Communication for Battery-free IoT Applications , 2017, MobiCom.

[32]  Ali Abedi,et al.  WiTAG: Rethinking Backscatter Communication for WiFi Networks , 2018, HotNets.

[33]  Sachin Katti,et al.  Full duplex backscatter , 2013, HotNets.

[34]  Joshua R. Smith,et al.  PASSIVE WI-FI: Bringing Low Power to Wi-Fi Transmissions , 2016, GETMBL.

[35]  Archan Misra,et al.  Can WiFi Beamforming Support an Energy-Harvesting Wearable? , 2017, ENSsys@SenSys.

[36]  Patrick P. Mercier,et al.  20.1 A 28µW IoT Tag That Can Communicate with Commodity WiFi Transceivers via a Single-Side-Band QPSK Backscatter Communication Technique , 2020, 2020 IEEE International Solid- State Circuits Conference - (ISSCC).

[37]  Xinbing Wang,et al.  OFDMA-Enabled Wi-Fi Backscatter , 2019, MobiCom.

[38]  Xin Liu VMscatter A Versatile MIMO Backscatter , 2020 .