Cryo-CMOS electronic control for scalable quantum computing

Quantum computers1 could revolutionize computing in a profound way due to the massive speedup they promise. A quantum computer comprises a cryogenic quantum processor and a classical electronic controller. When scaling up the cryogenic quantum processor to at least a few thousands, and possibly millions, of qubits required for any practical quantum algorithm, cryogenic CMOS (cryo-CMOS) electronics is required to allow feasible and compact interconnections between the controller and the quantum processor. Cryo-CMOS leverages the CMOS fabrication infrastructure while exploiting the continuous improvement of performance and miniaturization guaranteed by Moore's law, in order to enable the fabrication of a cost-effective practical quantum computer. However, designing cryo-CMOS integrated circuits requires a new set of CMOS device models, their embedding in design and verification tools, and the possibility to co-simulate the cryo-CMOS/quantum-processor architecture for full-system optimization. In this paper, we address these challenges by focusing on their impact on the design of complex cryo-CMOS systems.

[1]  David Reilly,et al.  Engineering the quantum-classical interface of solid-state qubits , 2015, npj Quantum Information.

[2]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.

[3]  A. Vladimirescu,et al.  Cryo-CMOS for quantum computing , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[4]  Xiang Fu,et al.  A heterogeneous quantum computer architecture , 2016, Conf. Computing Frontiers.

[5]  R. Feynman Simulating physics with computers , 1999 .

[6]  Lieven M. K. Vandersypen,et al.  1.4 Quantum computing - the next challenge in circuit and system design , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[7]  Germano S. Fonseca,et al.  Extraction of static parameters to extend the EKV model to cryogenic temperatures , 2016, SPIE Defense + Security.

[8]  John D. Cressler,et al.  Extreme Environment Electronics , 2012 .

[9]  Edoardo Charbon,et al.  A reconfigurable cryogenic platform for the classical control of quantum processors. , 2016, The Review of scientific instruments.

[10]  G. Gildenblat,et al.  Design applications of compact MOSFET model for extended temperature range (60-400K) , 2011 .

[11]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[12]  Andrea Morello,et al.  Robust Two-Qubit Gates for Donors in Silicon Controlled by Hyperfine Interactions , 2013, 1312.2197.

[13]  Torsten Lehmann,et al.  Effect of deep cryogenic temperature on silicon-on-insulator CMOS mismatch: A circuit designer’s perspective , 2014 .

[14]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[15]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[16]  P. Barthelemy,et al.  Long-distance coherent coupling in a quantum dot array. , 2013, Nature nanotechnology.

[17]  A. S. Royet,et al.  MOSFET modeling for design of ultra-high performance infrared CMOS imagers working at cryogenic temperatures: Case of an analog/digital 0.18 μm CMOS process , 2011 .

[18]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[19]  H. Lu,et al.  Cryogenic Control Architecture for Large-Scale Quantum Computing , 2014, 1409.2202.

[20]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[21]  Edoardo Charbon,et al.  CryoCMOS hardware technology a classical infrastructure for a scalable quantum computer , 2016, Conf. Computing Frontiers.

[22]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[23]  Matthias Troyer,et al.  The Quantum Future of Computation , 2016, Computer.

[24]  G. Ghibaudo,et al.  Low temperature characterization of 14nm FDSOI CMOS devices , 2014, 2014 11th International Workshop on Low Temperature Electronics (WOLTE).

[25]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[26]  Eddy Simoen,et al.  Impact of CMOS processing steps on the drain current kink of NMOSFETs at liquid helium temperature , 2001 .

[27]  Edoardo Charbon,et al.  A Cryogenic 1 GSa/s, Soft-Core FPGA ADC for Quantum Computing Applications , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[28]  Edoardo Charbon,et al.  Characterization of bipolar transistors for cryogenic temperature sensors in standard CMOS , 2016, 2016 IEEE SENSORS.

[29]  J. C. Bardin,et al.  Cryogenic small-signal and noise performance of 32nm SOI CMOS , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[30]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[31]  Hongliang Zhao,et al.  Modeling of a standard 0.35μm CMOS technology operating from 77K to 300K , 2014 .

[32]  Zhan Shi,et al.  Quantum control and process tomography of a semiconductor quantum dot hybrid qubit , 2014, Nature.

[33]  N. Goldsman,et al.  Compact and Distributed Modeling of Cryogenic Bulk MOSFET Operation , 2010, IEEE Transactions on Electron Devices.

[34]  Andrew W. Cross,et al.  Implementing a strand of a scalable fault-tolerant quantum computing fabric , 2013, Nature Communications.

[35]  J. P. Dehollain,et al.  Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  Lin Song,et al.  15.5 Cryo-CMOS circuits and systems for scalable quantum computing , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[37]  J I Colless,et al.  Dispersive readout of a few-electron double quantum dot with fast RF gate sensors. , 2012, Physical review letters.

[38]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[39]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[40]  I D Conway Lamb,et al.  An FPGA-based instrumentation platform for use at deep cryogenic temperatures. , 2015, The Review of scientific instruments.

[41]  A. Siligaris,et al.  High-Frequency and Noise Performances of 65-nm MOSFET at Liquid Nitrogen Temperature , 2006, IEEE Transactions on Electron Devices.

[42]  T. Lehmann,et al.  Characterization of SOS-CMOS FETs at Low Temperatures for the Design of Integrated Circuits for Quantum Bit Control and Readout , 2010, IEEE Transactions on Electron Devices.

[43]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.