Formulas for subdifferentials of sums of convex functions

We discuss various formulas for the subdifierential of the sum of lower semicontinuous convex functions given in terms of certain topological closure operations on the sum of the subdifierentials of each function. We show how the accuracy of the formulas expressed by the closure operations can be improved when additional assumptions on the family of functions are available.

[1]  Marc Lassonde,et al.  On a convergence of lower semicontinuous functions linked with the graph convergence of their subdifferentials , 1999 .

[2]  Florence Jules,et al.  Sur la somme de sous-différentiels de fonctions semi-continues inférieurement , 2003 .

[3]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[4]  Lionel Thibault,et al.  Sequential Convex Subdifferential Calculus and Sequential Lagrange Multipliers , 1997 .

[5]  Marc Lassonde,et al.  First-order rules for nonsmooth constrained optimization , 2001 .

[6]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[7]  H. Attouch,et al.  Duality for the Sum of Convex Functions in General Banach Spaces , 1986 .

[8]  F. Browder Nonlinear operators and nonlinear equations of evolution in Banach spaces , 1976 .

[9]  Lionel Thibault,et al.  A Generalized Sequential Formula for Subdifferentials of Sums of Convex Functions Defined on Banach Spaces , 1995 .

[10]  Stephen M. Robinson,et al.  Regularity and Stability for Convex Multivalued Functions , 1976, Math. Oper. Res..

[11]  Jonathan M. Borwein,et al.  Adjoint Process Duality , 1983, Math. Oper. Res..

[12]  Jonathan M. Borwein,et al.  Subdifferentials Whose Graphs Are Not Norm × Weak* Closed , 2003, Canadian Mathematical Bulletin.

[13]  Haim Brezis,et al.  Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .

[14]  Jean-Paul Penot,et al.  Subdifferential Calculus Without Qualification Assumptions , 1996 .