Formulas for subdifferentials of sums of convex functions
暂无分享,去创建一个
[1] Marc Lassonde,et al. On a convergence of lower semicontinuous functions linked with the graph convergence of their subdifferentials , 1999 .
[2] Florence Jules,et al. Sur la somme de sous-différentiels de fonctions semi-continues inférieurement , 2003 .
[3] R. Rockafellar. Conjugate Duality and Optimization , 1987 .
[4] Lionel Thibault,et al. Sequential Convex Subdifferential Calculus and Sequential Lagrange Multipliers , 1997 .
[5] Marc Lassonde,et al. First-order rules for nonsmooth constrained optimization , 2001 .
[6] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[7] H. Attouch,et al. Duality for the Sum of Convex Functions in General Banach Spaces , 1986 .
[8] F. Browder. Nonlinear operators and nonlinear equations of evolution in Banach spaces , 1976 .
[9] Lionel Thibault,et al. A Generalized Sequential Formula for Subdifferentials of Sums of Convex Functions Defined on Banach Spaces , 1995 .
[10] Stephen M. Robinson,et al. Regularity and Stability for Convex Multivalued Functions , 1976, Math. Oper. Res..
[11] Jonathan M. Borwein,et al. Adjoint Process Duality , 1983, Math. Oper. Res..
[12] Jonathan M. Borwein,et al. Subdifferentials Whose Graphs Are Not Norm × Weak* Closed , 2003, Canadian Mathematical Bulletin.
[13] Haim Brezis,et al. Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .
[14] Jean-Paul Penot,et al. Subdifferential Calculus Without Qualification Assumptions , 1996 .