Microstructure engineering beyond SnSe1-xSx solid solution for high thermoelectric performance

[1]  C. Uher,et al.  Ultra-high average figure of merit in synergistic band engineered Sn Na1−Se0.9S0.1 single crystals , 2018, Materials Today.

[2]  C. Uher,et al.  Low temperature thermoelectric properties of p-type doped single-crystalline SnSe , 2018 .

[3]  Jun Jiang,et al.  Charge Transport in Thermoelectric SnSe Single Crystals , 2018 .

[4]  X. Su,et al.  Understanding the combustion process for the synthesis of mechanically robust SnSe thermoelectrics , 2018 .

[5]  Jun Jiang,et al.  Texturing degree boosts thermoelectric performance of silver-doped polycrystalline SnSe , 2017 .

[6]  Taeghwan Hyeon,et al.  Enhancing p-Type Thermoelectric Performances of Polycrystalline SnSe via Tuning Phase Transition Temperature. , 2017, Journal of the American Chemical Society.

[7]  J. Heremans,et al.  Compromise and Synergy in High‐Efficiency Thermoelectric Materials , 2017, Advanced materials.

[8]  Jun Jiang,et al.  Growth and characterization of large size undoped p-type SnSe single crystal by Horizontal Bridgman method , 2017 .

[9]  P. Qin,et al.  Boosting the Thermoelectric Performance of (Na,K)-Codoped Polycrystalline SnSe by Synergistic Tailoring of the Band Structure and Atomic-Scale Defect Phonon Scattering. , 2017, Journal of the American Chemical Society.

[10]  Zhenxiang Cheng,et al.  Three‐Stage Inter‐Orthorhombic Evolution and High Thermoelectric Performance in Ag‐Doped Nanolaminar SnSe Polycrystals , 2017 .

[11]  G. J. Snyder,et al.  Enhancing the thermoelectric performance of SnSe1−xTex nanoplates through band engineering , 2017 .

[12]  B. Ge,et al.  Promoting SnTe as an Eco‐Friendly Solution for p‐PbTe Thermoelectric via Band Convergence and Interstitial Defects , 2017, Advanced materials.

[13]  J. Si,et al.  Enhanced thermoelectric performance of SnSe doped with layered MoS2/graphene , 2017 .

[14]  X. Tan,et al.  Acoustic phonon softening and reduced thermal conductivity in Mg2Si1−xSnx solid solutions , 2017 .

[15]  Jun Jiang,et al.  Enhanced thermoelectric performance in n-type polycrystalline SnSe by PbBr2 doping , 2017 .

[16]  Jun Jiang,et al.  Study on Thermoelectric Properties of Polycrystalline SnSe by Ge Doping , 2017, Journal of Electronic Materials.

[17]  Jingfeng Li,et al.  Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties , 2017, Scientific Reports.

[18]  Zhiwei Chen,et al.  Interstitial Defects Improving Thermoelectric SnTe in Addition to Band Convergence , 2017 .

[19]  G. J. Snyder,et al.  Thermoelectric transport properties of polycrystalline SnSe alloyed with PbSe , 2017 .

[20]  J. Vaney,et al.  Reinvestigation of the thermal properties of single-crystalline SnSe , 2017 .

[21]  Hui Sun,et al.  The intrinsic thermal conductivity of SnSe , 2016, Nature.

[22]  Wenyu Zhao,et al.  Understanding of the Extremely Low Thermal Conductivity in High‐Performance Polycrystalline SnSe through Potassium Doping , 2016 .

[23]  Gangjian Tan,et al.  Rationally Designing High-Performance Bulk Thermoelectric Materials. , 2016, Chemical reviews.

[24]  Ctirad Uher,et al.  Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe , 2016, Nature Communications.

[25]  M. Kanatzidis,et al.  Distinct Impact of Alkali-Ion Doping on Electrical Transport Properties of Thermoelectric p-Type Polycrystalline SnSe. , 2016, Journal of the American Chemical Society.

[26]  Geoffroy Hautier,et al.  Thinking Like a Chemist: Intuition in Thermoelectric Materials. , 2016, Angewandte Chemie.

[27]  Hongda Du,et al.  Enhanced mid-temperature thermoelectric performance of textured SnSe polycrystals made of solvothermally synthesized powders , 2016 .

[28]  Jun Jiang,et al.  Optimization of thermoelectric properties in n-type SnSe doped with BiCl3 , 2016 .

[29]  C. Uher,et al.  Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals , 2016 .

[30]  Jun Jiang,et al.  Enhanced thermoelectric performance in p-type polycrystalline SnSe benefiting from texture modulation , 2016 .

[31]  Z. Ren,et al.  Studies on thermoelectric figure of merit of Na-doped p-type polycrystalline SnSe , 2016 .

[32]  Heng Wang,et al.  Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe , 2016, Science.

[33]  Yulong Li,et al.  Investigation of the Anisotropic Thermoelectric Properties of Oriented Polycrystalline SnSe , 2015 .

[34]  Gang Chen,et al.  Studies on Thermoelectric Properties of n‐type Polycrystalline SnSe1‐xSx by Iodine Doping , 2015 .

[35]  Xingxing Jiang,et al.  Thermoelectric performance of SnS and SnS–SnSe solid solution , 2015 .

[36]  M. Kanatzidis,et al.  Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS , 2014 .

[37]  Tiejun Zhu,et al.  Point Defect Engineering of High‐Performance Bismuth‐Telluride‐Based Thermoelectric Materials , 2014 .

[38]  G. J. Snyder,et al.  Thermoelectric properties of p-type polycrystalline SnSe doped with Ag , 2014 .

[39]  J. Vaney,et al.  Assessment of the thermoelectric performance of polycrystalline p-type SnSe , 2014 .

[40]  Jun Jiang,et al.  Enhanced thermoelectric figure of merit in p-type Bi0.48Sb1.52Te3 alloy with WSe2 addition , 2014 .

[41]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[42]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[43]  Wei Liu,et al.  Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. , 2012, Physical review letters.

[44]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[45]  W. S. Liu,et al.  Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. , 2010, Nano letters.

[46]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[47]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[48]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[49]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[50]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[51]  Haas,et al.  Electronic structure of SnS deduced from photoelectron spectra and band-structure calculations. , 1992, Physical review. B, Condensed matter.

[52]  J. Jumas,et al.  Etudes sur le système ternaire SnInS. Analyses thermique differentielle et radiocristallographique du pseudobinaire SnSIn2S3. Croissance en phase vapeur et caractérisation de composés a valences mixtes de l'étain , 1986 .

[53]  Min Zhou,et al.  Optimization of Thermoelectric Performance of Anisotropic AgxSn1−xSe Compounds , 2015, Journal of Electronic Materials.