A computationally efficient methodology to characterize travel time reliability using the fast Fourier transform

[1]  W. Y. Szeto,et al.  Distribution-free travel time reliability assessment with probability inequalities , 2011 .

[2]  S. Waller,et al.  Relaxing the multivariate normality assumption in the simulation of transportation system dependencies: an old technique in a new domain , 2010 .

[3]  S. Travis Waller,et al.  Reliable System-Optimal Network Design , 2009 .

[4]  S. Waller,et al.  Dynamic Route Choice Model in Face of Uncertain Capacities , 2009 .

[5]  Agachai Sumalee,et al.  Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply , 2008 .

[6]  Hong K. Lo,et al.  Doubly uncertain transportation network: Degradable capacity and stochastic demand , 2008, Eur. J. Oper. Res..

[7]  Zhong Zhou,et al.  Comparative Analysis of Three User Equilibrium Models Under Stochastic Demand , 2008 .

[8]  Agachai Sumalee,et al.  Partition-based Algorithm for Estimating Transportation Network Reliability with Dependent Link Failures , 2008 .

[9]  Hong Kam Lo,et al.  Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion , 2006 .

[10]  Fumitaka Kurauchi,et al.  Network Capacity Reliability Analysis Considering Traffic Regulation after a Major Disaster , 2006 .

[11]  W. Y. Szeto,et al.  Risk-Averse Traffic Assignment with Elastic Demands: NCP Formulation and Solution Method for Assessing Performance Reliability , 2006 .

[12]  Qiang Meng,et al.  Demand-Driven Traffic Assignment Problem Based on Travel Time Reliability , 2006 .

[13]  Stephen D. Clark,et al.  Modelling network travel time reliability under stochastic demand , 2005 .

[14]  William H. K. Lam,et al.  New technology and the modeling of risk-taking behavior in congested road networks , 2004 .

[15]  Yasuo Asakura,et al.  Stochastic Network Design Problem: An Optimal Link Investment Model for Reliable Network , 2003 .

[16]  Hong Kam Lo,et al.  Network with degradable links: capacity analysis and design , 2003 .

[17]  Agachai Sumalee,et al.  TRAVEL TIME RELIABILITY IN A NETWORK WITH DEPENDENT LINK MODES AND PARTIAL DRIVER RESPONSE , 2003 .

[18]  Michael G.H. Bell,et al.  Risk-averse user equilibrium traffic assignment: an application of game theory , 2002 .

[19]  David P. Watling,et al.  A Second Order Stochastic Network Equilibrium Model, I: Theoretical Foundation , 2002, Transp. Sci..

[20]  Hong Kam Lo,et al.  Capacity reliability of a road network: an assessment methodology and numerical results , 2002 .

[21]  David Watling A SECOND ORDER STOCHASTIC NETWORK EQUILIBRIUM MODEL.. , 2002 .

[22]  Yafeng Yin,et al.  Assessing Performance Reliability of Road Networks Under Nonrecurrent Congestion , 2001 .

[23]  S. Travis Waller,et al.  Evaluation with Traffic Assignment Under Demand Uncertainty , 2001 .

[24]  Michael G.H. Bell,et al.  A game theory approach to measuring the performance reliability of transport networks , 2000 .

[25]  N. Ushakov Selected Topics in Characteristic Functions , 1999 .

[26]  Hong Kam Lo,et al.  A capacity related reliability for transportation networks , 1999 .

[27]  Mgh Bell,et al.  A SENSITIVITY BASED APPROACH TO NETWORK RELIABILITY ASSESSMENT , 1999 .

[28]  Alan Nicholson,et al.  DEGRADABLE TRANSPORTATION SYSTEMS: SENSITIVITY AND RELIABILITY ANALYSIS , 1997 .

[29]  Y Iida,et al.  Transportation Network Analysis , 1997 .

[30]  Vladimir Rokhlin,et al.  Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..

[31]  Ward Whitt,et al.  The Fourier-series method for inverting transforms of probability distributions , 1992, Queueing Syst. Theory Appl..

[32]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[33]  Yasunori Iida,et al.  UPPER AND LOWER BOUNDS OF TERMINAL RELIABILITY OF ROAD NETWORKS: AN EFFICIENT METHOD WITH BOOLEAN ALGEBRA , 1992 .

[34]  Yasuo Asakura,et al.  Road network reliability caused by daily fluctuation of traffic flow , 1991 .

[35]  E. Brigham,et al.  The fast Fourier transform and its applications , 1988 .

[36]  Terry L. Friesz,et al.  Equilibrium Decomposed Optimization: A Heuristic for the Continuous Equilibrium Network Design Problem , 1987, Transp. Sci..

[37]  William L. Briggs,et al.  The DFT : An Owner's Manual for the Discrete Fourier Transform , 1987 .

[38]  W. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[39]  Yosef Sheffi,et al.  Urban Transportation Networks: Equilibrium Analysis With Mathematical Programming Methods , 1985 .

[40]  Don H. Johnson,et al.  Gauss and the history of the fast Fourier transform , 1984, IEEE ASSP Magazine.

[41]  Clermont Dupuis,et al.  An Efficient Method for Computing Traffic Equilibria in Networks with Asymmetric Transportation Costs , 1984, Transp. Sci..

[42]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[43]  M. Degroot,et al.  Probability and Statistics , 1977 .

[44]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[45]  J. Wardrop ROAD PAPER. SOME THEORETICAL ASPECTS OF ROAD TRAFFIC RESEARCH. , 1952 .

[46]  J. G. Wardrop,et al.  Some Theoretical Aspects of Road Traffic Research , 1952 .

[47]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .

[48]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.