Parallel Personalized Pagerank on Dynamic Graphs

Personalized PageRank (PPR) is a well-known proximity measure in graphs. To meet the need for dynamic PPR maintenance, recent works have proposed a local update scheme to support incremental computation. Nevertheless, sequential execution of the scheme is still too slow for highspeed stream processing. Therefore, we are motivated to design a parallel approach for dynamic PPR computation. First, as updates always come in batches, we devise a batch processing method to reduce synchronization cost among every single update and enable more parallelism for iterative parallel execution. Our theoretical analysis shows that the parallel approach has the same asymptotic complexity as the sequential approach. Second, we devise novel optimization techniques to effectively reduce runtime overheads for parallel processes. Experimental evaluation shows that our parallel algorithm can achieve orders of magnitude speedups on GPUs and multi-core CPUs compared with the state-of-the-art sequential algorithm.

[1]  Andrew S. Grimshaw,et al.  High-Performance and Scalable GPU Graph Traversal , 2015, ACM Trans. Parallel Comput..

[2]  H. Howie Huang,et al.  Enterprise: breadth-first graph traversal on GPUs , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.

[3]  Vahab S. Mirrokni,et al.  Local Computation of PageRank Contributions , 2007, Internet Math..

[4]  James T. Halbert,et al.  Scalable graph clustering with parallel approximate PageRank , 2014, Social Network Analysis and Mining.

[5]  Peter Lofgren,et al.  Efficient Algorithms for Personalized PageRank , 2015, ArXiv.

[6]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[7]  Maurice Herlihy,et al.  Wait-free synchronization , 1991, TOPL.

[8]  John D. Owens,et al.  Gunrock: a high-performance graph processing library on the GPU , 2016, PPoPP 2016.

[9]  Kunle Olukotun,et al.  Efficient Parallel Graph Exploration on Multi-Core CPU and GPU , 2011, 2011 International Conference on Parallel Architectures and Compilation Techniques.

[10]  Keshav Pingali,et al.  A lightweight infrastructure for graph analytics , 2013, SOSP.

[11]  Huy T. Vo,et al.  The More the Merrier: Efficient Multi-Source Graph Traversal , 2014, Proc. VLDB Endow..

[12]  David A. Bader,et al.  Scalable Graph Exploration on Multicore Processors , 2010, 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis.

[13]  Pavel Berkhin,et al.  Bookmark-Coloring Algorithm for Personalized PageRank Computing , 2006, Internet Math..

[14]  Charles E. Leiserson,et al.  The Cilk++ concurrency platform , 2009, 2009 46th ACM/IEEE Design Automation Conference.

[15]  Jure Leskovec,et al.  Supervised random walks: predicting and recommending links in social networks , 2010, WSDM '11.

[16]  Tudor David,et al.  Everything you always wanted to know about synchronization but were afraid to ask , 2013, SOSP.

[17]  Bingsheng He,et al.  Accelerating Dynamic Graph Analytics on GPUs , 2017, Proc. VLDB Endow..

[18]  Keshav Pingali,et al.  Data-Driven Versus Topology-driven Irregular Computations on GPUs , 2013, 2013 IEEE 27th International Symposium on Parallel and Distributed Processing.

[19]  Konstantin Avrachenkov,et al.  Monte Carlo Methods in PageRank Computation: When One Iteration is Sufficient , 2007, SIAM J. Numer. Anal..

[20]  Guy E. Blelloch,et al.  A simple and practical linear-work parallel algorithm for connectivity , 2014, SPAA.

[21]  H. Howie Huang,et al.  iBFS: Concurrent Breadth-First Search on GPUs , 2016, SIGMOD Conference.

[22]  Ashish Goel,et al.  FAST-PPR: scaling personalized pagerank estimation for large graphs , 2014, KDD.

[23]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[24]  Hongyang Zhang,et al.  Approximate Personalized PageRank on Dynamic Graphs , 2016, KDD.

[25]  Zhenguo Li,et al.  PowerWalk: Scalable Personalized PageRank via Random Walks with Vertex-Centric Decomposition , 2016, CIKM.

[26]  Yin Yang,et al.  HubPPR: Effective Indexing for Approximate Personalized PageRank , 2016, Proc. VLDB Endow..

[27]  Jimmy J. Lin,et al.  WTF: the who to follow service at Twitter , 2013, WWW.

[28]  Jure Leskovec,et al.  Defining and evaluating network communities based on ground-truth , 2012, Knowledge and Information Systems.

[29]  Ashish Goel,et al.  Fast Incremental and Personalized PageRank , 2010, Proc. VLDB Endow..

[30]  Keval Vora,et al.  CuSha: vertex-centric graph processing on GPUs , 2014, HPDC '14.

[31]  Kevin Skadron,et al.  Scalable parallel programming , 2008, 2008 IEEE Hot Chips 20 Symposium (HCS).

[32]  Michael Garland,et al.  Work-Efficient Parallel GPU Methods for Single-Source Shortest Paths , 2014, 2014 IEEE 28th International Parallel and Distributed Processing Symposium.

[33]  David A. Bader,et al.  STINGER: High performance data structure for streaming graphs , 2012, 2012 IEEE Conference on High Performance Extreme Computing.

[34]  Ashish Goel,et al.  Personalized PageRank to a Target Node , 2013, ArXiv.

[35]  John D. Owens,et al.  Gunrock: a high-performance graph processing library on the GPU , 2015, PPoPP.

[36]  Guy E. Blelloch,et al.  Ligra: a lightweight graph processing framework for shared memory , 2013, PPoPP '13.

[37]  Ashish Goel,et al.  Personalized PageRank Estimation and Search: A Bidirectional Approach , 2015, WSDM.

[38]  Tao Guo,et al.  Distributed Algorithms on Exact Personalized PageRank , 2017, SIGMOD Conference.

[39]  S. Feld Why Your Friends Have More Friends Than You Do , 1991, American Journal of Sociology.

[40]  Fan Chung Graham,et al.  Local Graph Partitioning using PageRank Vectors , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[41]  Dong Xin,et al.  Fast personalized PageRank on MapReduce , 2011, SIGMOD '11.

[42]  Sudipto Guha,et al.  Graph Synopses, Sketches, and Streams: A Survey , 2012, Proc. VLDB Endow..

[43]  Takuya Akiba,et al.  Computing Personalized PageRank Quickly by Exploiting Graph Structures , 2014, Proc. VLDB Endow..

[44]  David A. Bader,et al.  Scalable and High Performance Betweenness Centrality on the GPU , 2014, SC14: International Conference for High Performance Computing, Networking, Storage and Analysis.

[45]  Ken-ichi Kawarabayashi,et al.  Efficient PageRank Tracking in Evolving Networks , 2015, KDD.

[46]  Joseph Gonzalez,et al.  PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs , 2012, OSDI.