Fatigue of polymers

The general nature of fracture in polymers, when subject to alternating loads as distinct from static or steadily increasing loads, is reviewed; and the molecular mechanisms and micromechanics aspects of the fatigue fracture process are discussed. Some attention is given to thermal fatigue, where fracture results primarily from a large specimen temperature rise due to hysteresis heating. However, primary emphasis is devoted to mechanical fatigue, in which fracture is a result of initiation and propagation of a crack, as a result of the periodic nature of the applied load.Attention is given to the important internal, or material, variables such as polymer structure, molecular weight, crosslinking, and filler or diluent type and content; and to significant external variables such as stress or stress intensity factor amplitude, mean stress, temperature, frequency and environment. Various methods that can be utilized to provide significant degrees of enhancement in the fatigue resistance of polymers are outlined and discussed.RésuméeOn passe en revue la nature générale de la rupture dans les polymeres lorsqu'ils sont sujets à des contraintes alternées en contraste par rapport à des contraintes statiques on croissantes de manière régulière. On discute également les mécanismes moléculaires et les aspects micromécaniques qui prennent place dans le processus de rupture par fatigue. Une attention particuliere est accodée à la fatigue thermique où les résultens de fatigue résultent principalement d'une élévation sensible de la température de l'éprouvette en raison du chauffage par hystérèse. Cependant,l'accent est principalement consacré à la fatigue mécanique dans lequel la rupture est le résultat d'un amorçage et d'une propagation d'une fissure tels qu'ils resultent de la nature périodique des charges appliquées.On accorde une attention particulière à des variables importantes internes ou caractéristiques du matériau telles que la structure du polymère, le poids moléculaire, les liaisons et le type et contenu des agents de dilution. Des variables externes significatives telles que la contrainte ou 1'amplitude du facteur d'intensité de contrainte, la contrainte moyenne, la température, la fréquence et l'environnement sont également pris en considération. Des méthodes variées susceptibles d'être utilisées en vue d'accroitre de manière significative la résistance à la fatigue des polymères sont mis en avant et sont discutés.

[1]  J. Sauer,et al.  Fatigue behavior of polystyrene and effect of mean stress , 1976 .

[2]  A. Atkins,et al.  Effects of rate, temperature and absorption of organic solvents on the fracture of plain and glass-filled polystyrene , 1976 .

[3]  P. P. Oldyrev,et al.  Fatigue life of polymethyl methacrylate in stationary and stepped nonisothermal cyclic loading regimes , 1975 .

[4]  R. Hertzberg,et al.  On the generality of discontinuous fatigue crack growth in glassy polymers , 1977 .

[5]  R. J. Crawford,et al.  Some fatigue characteristics of thermoplastics , 1975 .

[6]  G. Bartenev,et al.  Kinetic theory of brittle fracture of polymeric glasses , 1977 .

[7]  L. Nielsen Fatigue Behavior of Some Filled Polymers , 1975 .

[8]  F. Hauser,et al.  Deformation and Fracture Mechanics of Engineering Materials , 1976 .

[9]  J. Hearle,et al.  Fatigue studies of drawn and undrawn fibre materials , 1970 .

[10]  L. Henry Prediction and evaluation of the susceptibilities of glassy thermoplastics to environmental stress cracking , 1974 .

[11]  N. J. Mills,et al.  Craze growth and crack growth in poly(vinyl chloride) under monotonic and fatigue loading , 1976 .

[12]  R. Kambour,et al.  The Role of Organic Agents in the Stress Crazing and Cracking of Poly(2,6-dimethyl-1,4-phenylene oixde) , 1968 .

[13]  J. Sauer,et al.  Influence of molecular weight on fatigue behavior of polyethylene and polystyrene , 1977 .

[14]  T. Freitag,et al.  Fracture characteristics of acrylic bone cements. II. Fatigue. , 1977, Journal of Biomedical Materials Research.

[15]  J. Hearle Fatigue in fibres and plastics (a review) , 1967 .

[16]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[17]  P. Beardmore,et al.  Failure of polystyrene in tensile and cyclic deformation , 1973 .

[18]  I. Ward,et al.  Fatigue-crack propagation in vinyl urethane polymers , 1973 .

[19]  Taylor Francis Online Journal of macromolecular science. Physics , 1967 .

[20]  V. P. Tamuzh,et al.  Fracture and fatigue of polymers and composites (survey) , 1977 .

[21]  C. Chung,et al.  Low-temperature mechanical relaxations in polymers containing aromatic groups , 1971 .

[22]  H. Herglotz Wavelength Identification of Ultrasoft X Rays by the Critical Angle of Total Reflection , 1967 .

[23]  J. Dally,et al.  Fatigue behavior of glass‐fiber fortified thermoplastics , 1969 .

[24]  J. Sauer,et al.  The effect of molecular weight on the fatigue behavior of polystyrene , 1972 .

[25]  M. Takayanagi,et al.  ESR study of structural changes in high‐density polyethylene subjected to cyclic tensile stress , 1973 .

[26]  R. Hertzberg,et al.  Frequency sensitivity of fatigue processes in polymeric solids , 1975 .

[27]  H. Nordberg,et al.  Fatigue crack propagation in polymeric materials , 1970 .

[28]  A. Dibenedetto,et al.  Fatigue crack propagation in, graphite fiber reinforced nylon 66 , 1979 .

[29]  J. Mandell Origin of moisture effects on crack propagation in composites , 1979 .

[30]  W. Gerberich,et al.  Temperature effects on fatigue crack growth in polycarbonate , 1976 .

[31]  R. Hertzberg,et al.  Fatigue crack propagation in poly(methyl methacrylate): Effect of molecular weight and internal plasticization , 1977 .

[32]  A. Matsumoto,et al.  Studies of the polymerization of diallyl compounds. XIX. Further discussion of the cyclocopolymerizations of diallyl phthalate with monovinyl monomers by the use of the model compounds , 1973 .

[33]  J. Bauwens,et al.  Fatigue crack growth in poly (vinyl chloride) , 1971 .

[34]  F. Ohishi,et al.  Factors affecting dynamic durability of polycarbonate under bending, torsional, and impacting fatigue and in cavitation erosion and dynamic solvent cracking conditions , 1976 .

[35]  R. Hertzberg,et al.  Effect of molecular weight distribution on fatigue crack propagation in poly(methyl methacrylate) , 1979 .

[36]  E. Baer,et al.  The Mechanism of Crazing in Polystyrene , 1975 .

[37]  N. Waters Crack-growth phenomena in fatigued poly(methylmethacrylate) , 1966 .

[38]  J. Månson,et al.  Structure of polymers and fatigue crack propagation , 1973 .

[39]  T. A. Johnson Fatigue Fracture of Polymethylmethacrylate , 1972 .

[40]  J. Schultz Fatigue Behavior of Engineering Polymers , 1977 .

[41]  R. Hertzberg,et al.  Correlation between fatigue fracture properties and viscoelastic damping response in engineering plastics , 1978 .

[42]  R. Hertzberg,et al.  Fatigue fracture processes in polystyrene , 1976 .

[43]  R. Good,et al.  The contact angle of water on polystyrene: A study of the cause of hysteresis , 1978 .

[44]  L. E. Culver,et al.  The influence of temperature and frequency on fatigue crack propagation in polymers , 1976 .

[45]  B. Mukherjee,et al.  Fatigue-crack growth in polymethylmethacrylate , 1971 .

[46]  J. Williams A model of fatigue crack growth in polymers , 1977 .

[47]  J. Ferry Viscoelastic properties of polymers , 1961 .

[48]  Julian F. Johnson,et al.  Molecular weight–mechanical property interrelationships. V. Poly(vinyl chloride) fracture surfaces: The effect of molecular weight and vapor environment , 1974 .

[49]  G. Goldbach,et al.  Zur spannungsrißbildung von hochpolymeren , 1967 .

[50]  T. Tanimoto,et al.  Progressive Nature of Fatigue Damage of Glass Fiber Reinforced Plastics , 1975 .

[51]  E. H. Andrews,et al.  Fracture of Polymers , 1972, Nature.

[52]  JULIAN F. Johnson,et al.  Mechanical Properties of Polymers: The Influence of Molecular Weight and Molecular Weight Distribution , 1972 .

[53]  P. Beardmore,et al.  Cyclic deformation and fracture of polymers , 1974 .

[54]  R. Hertzberg,et al.  Fatigue crack propagation in polyacetal , 1978 .

[55]  M. N. Riddell,et al.  Fatigue mechanisms of thermoplastics , 1966 .

[56]  E. Baer,et al.  The Environmental Stress-Crazing and Cracking in Polystyrene Under High Pressure, , 1975 .

[57]  A. Charlesby,et al.  Effects of radiation and chain ends on fatigue behaviour of polystyrene , 1979 .

[58]  P. Vincent,et al.  Influence of hydrogen bonding on crazing and cracking of amorphous thermoplastics , 1972 .

[59]  V. S. Kuksenko,et al.  The micromechanics of polymer fracture , 1975 .

[60]  M. A. White,et al.  Perfluoroalkylene‐linked aromatic polyimides. I. Synthesis, structure, and some general physical characteristics , 1972 .

[61]  J. Sauer,et al.  Nature of fatigue behavior and effect of flaw size in polystyrene , 1974 .

[62]  Y. Mai Fatigue crack propagation of PMMA in organic solvents , 1974 .

[63]  C. Beatty,et al.  The effect of temperature on compressive fatigue of polystyrene , 1978 .

[64]  G. P. Marshall,et al.  Fracture phenomena in polystyrene , 1973 .

[65]  J. Sauer,et al.  Effects of environment and surface coatings on the fatigue properties of polystyrene , 1978 .

[66]  V. R. Regel',et al.  A study of fatigue within the framework of the kinetic concept of fracture , 1967 .

[67]  S. N. Zhurkov,et al.  Atomic mechanism of fracture of solid polymers , 1974 .

[68]  L. E. Culver,et al.  Fracture-mechanics analysis of fatigue-crack propagation in polymethylmethacrylate , 1968 .

[69]  W. J. Astleford,et al.  Microstructural control of fatigue-crack growth in a brittle, two-phase polymer , 1976 .

[70]  R. Kambour,et al.  A review of crazing and fracture in thermoplastics , 1973 .

[71]  T. R. Tauchert,et al.  Heat Generated during Torsional Oscillations of Polymethylmethacrylate Tubes , 1967 .

[72]  J. Sauer,et al.  On Crazing of Linear High Polymers , 1950 .

[73]  E. H. Andrews,et al.  Fatigue fracture in polyethylene , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[74]  E. H. Andrews,et al.  Mechanics and mechanism of environmental crazing in a polymeric glass , 1972 .

[75]  I. Narisawa Crazing of glassy polymers in alcohols and hydrocarbons , 1972 .

[76]  V. Vettegren’,et al.  Stress on the interatomic bonds near the surface of a polymer , 1976 .

[77]  G. Östberg,et al.  Measurements of the temperature rise ahead of a fatigue crack , 1971 .

[78]  J. Sauer Static and dynamic properties of monodisperse polystyrenes: influence of molecular weight , 1978 .

[79]  J. Manson,et al.  Micromechanisms of fatigue-crack advance in PVC , 1973 .

[80]  W. J. Plumbridge,et al.  Review: Fatigue-crack propagation in metallic and polymeric materials , 1972 .