APOBEC proteins and intrinsic resistance to HIV-1 infection

Members of the APOBEC family of cellular polynucleotide cytidine deaminases, most notably APOBEC3G and APOBEC3F, are potent inhibitors of HIV-1 infection. Wild type HIV-1 infections are largely spared from APOBEC3G/F function through the action of the essential viral protein, Vif. In the absence of Vif, APOBEC3G/F are encapsidated by budding virus particles leading to excessive cytidine (C) to uridine (U) editing of negative sense reverse transcripts in newly infected cells. This registers as guanosine (G) to adenosine (A) hypermutations in plus-stranded cDNA. In addition to this profoundly debilitating effect on genetic integrity, APOBEC3G/F also appear to inhibit viral DNA synthesis by impeding the translocation of reverse transcriptase along template RNA. Because the functions of Vif and APOBEC3G/F proteins oppose each other, it is likely that fluctuations in the Vif–APOBEC balance may influence the natural history of HIV-1 infection, as well as viral sequence diversification and evolution. Given Vif's critical role in suppressing APOBEC3G/F function, it can be argued that pharmacologic strategies aimed at restoring the activity of these intrinsic anti-viral factors in the context of infected cells in vivo have clear therapeutic merit, and therefore deserve aggressive pursuit.

[1]  B. Cullen,et al.  Single-stranded RNA facilitates nucleocapsid: APOBEC3G complex formation. , 2008, RNA.

[2]  B. Cullen,et al.  Human APOBEC3B is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 Vif. , 2005, Virology.

[3]  T. Rana,et al.  Human Retroviral Host Restriction Factors APOBEC3G and APOBEC3F Localize to mRNA Processing Bodies , 2006, PLoS pathogens.

[4]  M. Malim,et al.  Hypermutation of an Ancient Human Retrovirus by APOBEC3G , 2008, Journal of Virology.

[5]  W. J. Esselman,et al.  Identification of APOBEC3DE as Another Antiretroviral Factor from the Human APOBEC Family , 2006, Journal of Virology.

[6]  Nelson L Michael,et al.  Variable contexts and levels of hypermutation in HIV-1 proviral genomes recovered from primary peripheral blood mononuclear cells. , 2008, Virology.

[7]  S. Heath,et al.  Exhaustive genotyping of the CEM15 (APOBEC3G) gene and absence of association with AIDS progression in a French cohort. , 2005, The Journal of infectious diseases.

[8]  V. Pathak,et al.  A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  R. König,et al.  Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome , 2004, Nature Structural &Molecular Biology.

[10]  B. Strack,et al.  Vif Overcomes the Innate Antiviral Activity of APOBEC3G by Promoting Its Degradation in the Ubiquitin-Proteasome Pathway* , 2004, Journal of Biological Chemistry.

[11]  M. Malim,et al.  Antiviral Potency of APOBEC Proteins Does Not Correlate with Cytidine Deamination , 2006, Journal of Virology.

[12]  V. Pathak,et al.  Identification of Two Distinct Human Immunodeficiency Virus Type 1 Vif Determinants Critical for Interactions with Human APOBEC3G and APOBEC3F , 2007, Journal of Virology.

[13]  K. Iwai,et al.  Ubiquitination of APOBEC3G by an HIV-1 Vif-Cullin5-Elongin B-Elongin C Complex Is Essential for Vif Function* , 2005, Journal of Biological Chemistry.

[14]  J. Coffin,et al.  Role of APOBEC3 in Genetic Diversity among Endogenous Murine Leukemia Viruses , 2007, PLoS genetics.

[15]  L. Montagnier,et al.  HIV/HTLV gene nomenclature , 1988, Nature.

[16]  W. Greene,et al.  Newly Synthesized APOBEC3G Is Incorporated into HIV Virions, Inhibited by HIV RNA, and Subsequently Activated by RNase H , 2007, PLoS pathogens.

[17]  Robert F. Siliciano,et al.  Role of APOBEC3G/F-Mediated Hypermutation in the Control of Human Immunodeficiency Virus Type 1 in Elite Suppressors , 2007, Journal of Virology.

[18]  D. Pérez-Caballero,et al.  APOBEC3G Incorporation into Human Immunodeficiency Virus Type 1 Particles , 2004, Journal of Virology.

[19]  F. McCutchan,et al.  Human Immunodeficiency Virus Type 1 DNA Sequences Genetically Damaged by Hypermutation Are Often Abundant in Patient Peripheral Blood Mononuclear Cells and May Be Generated during Near-Simultaneous Infection and Activation of CD4+ T Cells , 2001, Journal of Virology.

[20]  R. Wolfenden,et al.  Cytidine deaminase. The 2.3 A crystal structure of an enzyme: transition-state analog complex. , 1994, Journal of molecular biology.

[21]  Robert M Grant,et al.  Target Cell APOBEC3C Can Induce Limited G-to-A Mutation in HIV-1 , 2007, PLoS pathogens.

[22]  M. Malim,et al.  The regulation of primate immunodeficiency virus infectivity by Vif is cell species restricted: a role for Vif in determining virus host range and cross‐species transmission , 1998, The EMBO journal.

[23]  Xianghui Yu,et al.  Induction of APOBEC 3 G Ubiquitination and Degradation by an HIV-1 Vif-Cul 5-SCF Complex , 2022 .

[24]  Reuben S. Harris,et al.  Retroviral restriction by APOBEC proteins , 2004, Nature Reviews Immunology.

[25]  M. Neuberger,et al.  Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. , 2005, Molecular biology and evolution.

[26]  M. Marin,et al.  HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation , 2003, Nature Medicine.

[27]  D. Trono,et al.  A Single Amino Acid Determinant Governs the Species-specific Sensitivity of APOBEC3G to Vif Action* , 2004, Journal of Biological Chemistry.

[28]  J. Goncalves,et al.  Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation. , 2004, Genes & development.

[29]  G. Heidecker,et al.  Resistance of human T cell leukemia virus type 1 to APOBEC3G restriction is mediated by elements in nucleocapsid , 2007, Proceedings of the National Academy of Sciences.

[30]  Michael Emerman,et al.  HIV-1 accessory proteins--ensuring viral survival in a hostile environment. , 2008, Cell host & microbe.

[31]  D. Trono,et al.  Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells , 1993, Journal of virology.

[32]  R. Reichman,et al.  APOBEC3G/CEM15 (hA3G) mRNA Levels Associate Inversely with Human Immunodeficiency Virus Viremia , 2005, Journal of Virology.

[33]  W. Brown,et al.  APOBEC3F Properties and Hypermutation Preferences Indicate Activity against HIV-1 In Vivo , 2004, Current Biology.

[34]  P. Bieniasz,et al.  Comparative analysis of the antiretroviral activity of APOBEC3G and APOBEC3F from primates. , 2006, Virology.

[35]  P. Munson,et al.  Myeloid differentiation and susceptibility to HIV-1 are linked to APOBEC3 expression. , 2007, Blood.

[36]  M. Khan,et al.  Human Immunodeficiency Virus Type 1 Vif Inhibits Packaging and Antiviral Activity of a Degradation-Resistant APOBEC3G Variant , 2007, Journal of Virology.

[37]  T. Hope,et al.  APOBEC3G restricts early HIV-1 replication in the cytoplasm of target cells. , 2008, Virology.

[38]  M. Marin,et al.  The Anti-HIV-1 Editing Enzyme APOBEC3G Binds HIV-1 RNA and Messenger RNAs That Shuttle between Polysomes and Stress Granules* , 2006, Journal of Biological Chemistry.

[39]  P. Spearman,et al.  APOBEC3G Multimers Are Recruited to the Plasma Membrane for Packaging into Human Immunodeficiency Virus Type 1 Virus-Like Particles in an RNA-Dependent Process Requiring the NC Basic Linker , 2007, Journal of Virology.

[40]  R. Desrosiers,et al.  Identification of Highly Attenuated Mutants of Simian Immunodeficiency Virus , 1998, Journal of Virology.

[41]  M. Klein,et al.  The APOBEC-2 crystal structure and functional implications for the deaminase AID , 2007, Nature.

[42]  W. Kaelin,et al.  Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. , 1999, Science.

[43]  Shu Zheng,et al.  Primate lentiviral virion infectivity factors are substrate receptors that assemble with cullin 5-E3 ligase through a HCCH motif to suppress APOBEC3G. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Malim,et al.  Identification of Amino Acid Residues in APOBEC3G Required for Regulation by Human Immunodeficiency Virus Type 1 Vif and Virion Encapsidation , 2007, Journal of Virology.

[45]  Hui Li,et al.  Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection , 2008, Proceedings of the National Academy of Sciences.

[46]  V. Andrésdóttir,et al.  Evolutionarily conserved and non-conserved retrovirus restriction activities of artiodactyl APOBEC3F proteins , 2006, Nucleic acids research.

[47]  M. Malim,et al.  Human immunodeficiency virus type 1 Vif does not influence expression or virion incorporation of gag-, pol-, and env-encoded proteins , 1996, Journal of virology.

[48]  R. König,et al.  Species-Specific Exclusion of APOBEC3G from HIV-1 Virions by Vif , 2003, Cell.

[49]  P. Bieniasz,et al.  Generation of Simian-Tropic HIV-1 by Restriction Factor Evasion , 2006, Science.

[50]  Ma Luo,et al.  Human Immunodeficiency Virus (HIV) Type 1 Proviral Hypermutation Correlates with CD4 Count in HIV-Infected Women from Kenya , 2008, Journal of Virology.

[51]  L. Lopalco,et al.  Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G: a possible role in the resistance to HIV of HIV-exposed seronegative individuals. , 2007, The Journal of infectious diseases.

[52]  M. Malim,et al.  Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein , 2002, Nature.

[53]  W. Greene,et al.  HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. , 2003, Molecular cell.

[54]  S. Calattini,et al.  Restriction of Foamy Viruses by APOBEC Cytidine Deaminases , 2006, Journal of Virology.

[55]  M Sala,et al.  G-->A hypermutation of the human immunodeficiency virus type 1 genome: evidence for dCTP pool imbalance during reverse transcription. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Xiao-Fang Yu,et al.  Regulation of Apobec3F and Human Immunodeficiency Virus Type 1 Vif by Vif-Cul5-ElonB/C E3 Ubiquitin Ligase , 2005, Journal of Virology.

[57]  M. Malim,et al.  DNA Deamination Mediates Innate Immunity to Retroviral Infection , 2003, Cell.

[58]  Reuben S Harris,et al.  The Vif Protein of HIV Triggers Degradation of the Human Antiretroviral DNA Deaminase APOBEC3G , 2003, Current Biology.

[59]  Yong-Hui Zheng,et al.  APOBEC3G Is Degraded by the Proteasomal Pathway in a Vif-dependent Manner without Being Polyubiquitylated* , 2008, Journal of Biological Chemistry.

[60]  R. König,et al.  Complementary function of the two catalytic domains of APOBEC3G. , 2005, Virology.

[61]  W. Greene,et al.  High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition , 2006, Proceedings of the National Academy of Sciences.

[62]  M. Khan,et al.  Viral RNA Is Required for the Association of APOBEC3G with Human Immunodeficiency Virus Type 1 Nucleoprotein Complexes , 2005, Journal of Virology.

[63]  B. Cullen,et al.  Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor. , 2004, Virology.

[64]  J. Goedert,et al.  Polymorphisms of CUL5 Are Associated with CD4+ T Cell Loss in HIV-1 Infected Individuals , 2007, PLoS genetics.

[65]  W. Greene,et al.  Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells , 2005, Nature.

[66]  M. Malim,et al.  Evidence for a newly discovered cellular anti-HIV-1 phenotype , 1998, Nature Medicine.

[67]  M. Malim,et al.  The human immunodeficiency virus type 1 Vif protein modulates the postpenetration stability of viral nucleoprotein complexes , 1996, Journal of virology.

[68]  M. Goodman,et al.  APOBEC3G DNA deaminase acts processively 3′ → 5′ on single-stranded DNA , 2006, Nature Structural &Molecular Biology.

[69]  A. Engelman,et al.  Human Immunodeficiency Virus Type 1 cDNAs Produced in the Presence of APOBEC3G Exhibit Defects in Plus-Strand DNA Transfer and Integration , 2007, Journal of Virology.

[70]  C. Burant,et al.  Molecular cloning of an apolipoprotein B messenger RNA editing protein. , 1993, Science.

[71]  B. Cullen,et al.  A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV‐1 and HIV‐2 Vif proteins , 2004, The EMBO journal.

[72]  Gersende Caron,et al.  Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts , 2003, Nature.

[73]  Amalio Telenti,et al.  APOBEC3G Genetic Variants and Their Influence on the Progression to AIDS , 2004, Journal of Virology.

[74]  J. Church Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen , 2008, Pediatrics.

[75]  M. Neuberger,et al.  Human APOBEC3G Can Restrict Retroviral Infection in Avian Cells and Acts Independently of both UNG and SMUG1 , 2008, Journal of Virology.

[76]  Michel Henry,et al.  APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. , 2004, Nucleic acids research.

[77]  P. Sova,et al.  Efficiency of viral DNA synthesis during infection of permissive and nonpermissive cells with vif-negative human immunodeficiency virus type 1 , 1993, Journal of virology.

[78]  M. Stevenson,et al.  HIV‐1 replication is controlled at the level of T cell activation and proviral integration. , 1990, The EMBO journal.

[79]  A. Fisher,et al.  The sor gene of HIV-1 is required for efficient virus transmission in vitro. , 1987, Science.

[80]  T. Heidmann,et al.  APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses , 2005, Nature.

[81]  B. Cullen,et al.  The Betaretrovirus Mason-Pfizer Monkey Virus Selectively Excludes Simian APOBEC3G from Virion Particles , 2006, Journal of Virology.

[82]  M. Malim,et al.  Cytidine Deamination of Retroviral DNA by Diverse APOBEC Proteins , 2004, Current Biology.

[83]  S. Anant,et al.  Molecular mechanisms of apolipoprotein B mRNA editing , 2001, Current opinion in lipidology.

[84]  M. Emerman,et al.  Uracil DNA Glycosylase Is Dispensable for Human Immunodeficiency Virus Type 1 Replication and Does Not Contribute to the Antiviral Effects of the Cytidine Deaminase Apobec3G , 2006, Journal of Virology.

[85]  Tara L. Kieffer,et al.  G→A Hypermutation in Protease and Reverse Transcriptase Regions of Human Immunodeficiency Virus Type 1 Residing in Resting CD4+ T Cells In Vivo , 2005, Journal of Virology.

[86]  S. Wain-Hobson,et al.  Twin gradients in APOBEC3 edited HIV-1 DNA reflect the dynamics of lentiviral replication , 2006, Nucleic acids research.

[87]  H. Hanenberg,et al.  Restriction of Foamy Viruses by Primate Trim5α , 2008, Journal of Virology.

[88]  Yunkai Yu,et al.  Induction of APOBEC3G Ubiquitination and Degradation by an HIV-1 Vif-Cul5-SCF Complex , 2003, Science.

[89]  H. Matsuo,et al.  Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G , 2008, Nature.

[90]  M. Malim,et al.  APOBEC-Mediated Editing of Viral RNA , 2004, Science.

[91]  C. Lilley,et al.  APOBEC3A Is a Potent Inhibitor of Adeno-Associated Virus and Retrotransposons , 2006, Current Biology.

[92]  A. Telenti,et al.  Model Structure of Human APOBEC3G , 2007, PloS one.

[93]  M. Malim,et al.  Antiviral Function of APOBEC3G Can Be Dissociated from Cytidine Deaminase Activity , 2005, Current Biology.

[94]  Jerome A. Zack,et al.  HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile, latent viral structure , 1990, Cell.

[95]  J. Kappes,et al.  Cytidine Deaminases APOBEC3G and APOBEC3F Interact with Human Immunodeficiency Virus Type 1 Integrase and Inhibit Proviral DNA Formation , 2007, Journal of Virology.

[96]  R. Harris,et al.  The DNA Deaminase Activity of Human APOBEC3G Is Required for Ty1, MusD, and Human Immunodeficiency Virus Type 1 Restriction , 2008, Journal of Virology.

[97]  M. Malim,et al.  DNA deamination: not just a trigger for antibody diversification but also a mechanism for defense against retroviruses , 2003, Nature Immunology.

[98]  J. Sodroski,et al.  Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes , 1992, Journal of virology.

[99]  E. Thomas,et al.  A Zinc-binding Region in Vif Binds Cul5 and Determines Cullin Selection* , 2006, Journal of Biological Chemistry.

[100]  D. Ho,et al.  Natural Variation in Vif: Differential Impact on APOBEC3G/3F and a Potential Role in HIV-1 Diversification , 2005, PLoS pathogens.

[101]  Hui Zhang,et al.  The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA , 2003, Nature.

[102]  S. Goff Genetic control of retrovirus susceptibility in mammalian cells. , 2004, Annual review of genetics.

[103]  B. Cullen,et al.  A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[104]  K. Metzner,et al.  Comparison of G-to-A Mutation Frequencies Induced by APOBEC3 Proteins in H9 Cells and Peripheral Blood Mononuclear Cells in the Context of Impaired Processivities of Drug-Resistant Human Immunodeficiency Virus Type 1 Reverse Transcriptase Variants , 2008, Journal of Virology.

[105]  Xianghui Yu,et al.  Differential Requirement for Conserved Tryptophans in Human Immunodeficiency Virus Type 1 Vif for the Selective Suppression of APOBEC3G and APOBEC3F , 2006, Journal of Virology.

[106]  M. Malim,et al.  SnapShot: HIV-1 Proteins , 2008, Cell.

[107]  M. Malim,et al.  APOBEC3F Can Inhibit the Accumulation of HIV-1 Reverse Transcription Products in the Absence of Hypermutation , 2007, Journal of Biological Chemistry.

[108]  M. Malim,et al.  APOBEC-mediated viral restriction: not simply editing? , 2007, Trends in biochemical sciences.

[109]  B. Cullen,et al.  The intrinsic antiretroviral factor APOBEC3B contains two enzymatically active cytidine deaminase domains. , 2007, Virology.

[110]  P. T. N. Sarkis,et al.  7SL RNA Mediates Virion Packaging of the Antiviral Cytidine Deaminase APOBEC3G , 2007, Journal of Virology.

[111]  S. Wain-Hobson,et al.  Evidence for Editing of Human Papillomavirus DNA by APOBEC3 in Benign and Precancerous Lesions , 2008, Science.

[112]  M. Malim,et al.  Antiviral Protein APOBEC3G Localizes to Ribonucleoprotein Complexes Found in P Bodies and Stress Granules , 2006, Journal of Virology.

[113]  L. Kleiman,et al.  Inhibition of tRNA₃(Lys)-primed reverse transcription by human APOBEC3G during human immunodeficiency virus type 1 replication. , 2006, Journal of virology.

[114]  M. Malim,et al.  The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif , 2003, Nature Medicine.

[115]  村松 正道 Specific expression of activation-induced cytidine deaminase (AID) , a novel member of the RNA editing deaminase family in germinal center B cells , 1999 .

[116]  J. Lieberman,et al.  Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen , 2007, Science.

[117]  Navid Madani,et al.  An Endogenous Inhibitor of Human Immunodeficiency Virus in Human Lymphocytes Is Overcome by the Viral Vif Protein , 1998, Journal of Virology.

[118]  G. Manning,et al.  Mutational Alteration of Human Immunodeficiency Virus Type 1 Vif Allows for Functional Interaction with Nonhuman Primate APOBEC3G , 2006, Journal of Virology.

[119]  W. Greene,et al.  The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. , 2008, Annual review of immunology.

[120]  N. Landau,et al.  A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[121]  M. Malim,et al.  Further Investigation of Simian Immunodeficiency Virus Vif Function in Human Cells , 2004, Journal of Virology.

[122]  M. Malim,et al.  APOBEC3G Inhibits Elongation of HIV-1 Reverse Transcripts , 2008, PLoS pathogens.

[123]  K. Strebel,et al.  The HIV A (sor) gene product is essential for virus infectivity , 1987, Nature.

[124]  Xianghui Yu,et al.  Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines. , 2004, Genes & development.

[125]  P. Bieniasz Intrinsic immunity: a front-line defense against viral attack , 2004, Nature Immunology.

[126]  B. Chang,et al.  Apolipoprotein Β mRNA Editing , 1998 .

[127]  M. Neuberger,et al.  Molecular mechanisms of antibody somatic hypermutation. , 2007, Annual review of biochemistry.

[128]  D. Palmer,et al.  Human immunodeficiency virus. , 1990, Journal of the American Podiatric Medical Association.

[129]  J. Fitzgibbon,et al.  A new type of G-->A hypermutation affecting human immunodeficiency virus. , 1993, AIDS research and human retroviruses.

[130]  M. Khan,et al.  Enzymatically Active APOBEC3G Is Required for Efficient Inhibition of Human Immunodeficiency Virus Type 1 , 2007, Journal of Virology.

[131]  F. Rey,et al.  Peripheral blood mononuclear cells produce normal amounts of defective Vif- human immunodeficiency virus type 1 particles which are restricted for the preretrotranscription steps , 1995, Journal of virology.

[132]  V. Pathak,et al.  Human Apolipoprotein B mRNA-editing Enzyme-catalytic Polypeptide-like 3G (APOBEC3G) Is Incorporated into HIV-1 Virions through Interactions with Viral and Nonviral RNAs* , 2004, Journal of Biological Chemistry.

[133]  Takeshi Kurosu,et al.  Human APOBEC3F Is Another Host Factor That Blocks Human Immunodeficiency Virus Type 1 Replication , 2004, Journal of Virology.

[134]  Reuben S Harris,et al.  RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. , 2002, Molecular cell.

[135]  A. Gronenborn,et al.  Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G , 2007, Nucleic acids research.

[136]  M. Malim,et al.  Comprehensive Investigation of the Molecular Defect in vif-Deficient Human Immunodeficiency Virus Type 1 Virions , 2003, Journal of Virology.

[137]  H. Takeuchi,et al.  Biochemical Activities of Highly Purified, Catalytically Active Human APOBEC3G: Correlation with Antiviral Effect , 2006, Journal of Virology.

[138]  N. Davidson,et al.  APOBEC3F and APOBEC3G mRNA Levels Do Not Correlate with Human Immunodeficiency Virus Type 1 Plasma Viremia or CD4+ T-Cell Count , 2006, Journal of Virology.

[139]  Xianghui Yu,et al.  Amino-Terminal Region of the Human Immunodeficiency Virus Type 1 Nucleocapsid Is Required for Human APOBEC3G Packaging , 2004, Journal of Virology.

[140]  M. Gonda,et al.  Conservation of amino-acid sequence motifs in lentivirus Vif proteins , 2005, Virus Genes.

[141]  Lorne W. Walker,et al.  T Cells Contain an RNase-Insensitive Inhibitor of APOBEC3G Deaminase Activity , 2007, PLoS pathogens.