LGOH-Based Discriminant Centre-Surround Saliency Detection

Discriminant saliency is a kind of decision-theoretic-based saliency detection method that has been proposed recently. Based on local gradient distribution, this paper proposes a simple but efficient discriminant centre-surround hypothesis, and builds local and global saliency models by combining multi-scale intensity contrast with colour and orientation features. This method makes three important contributions. First, a circular and multi-scale hierarchical centre-surround profile is designed for the local saliency detection. Secondly, the dense local gradient orientation histogram (LGOH) of the centre-surround region is counted and used for the local saliency analysis. And thirdly, a new integration strategy for the local and global saliency is proposed and applied to the final visual saliency discriminant. Experiments demonstrate the effectiveness of the proposed method. Compared with 12 state-of-the-art saliency detection models, the proposed method outperforms the others in precision-recall, F-measures and mean absolute error (MAE), and can produce a more complete salient object.

[1]  Nuno Vasconcelos,et al.  Discriminant Saliency, the Detection of Suspicious Coincidences, and Applications to Visual Recognition , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Lihi Zelnik-Manor,et al.  Context-Aware Saliency Detection , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Vincent Lepetit,et al.  DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Ramon Baldrich,et al.  Saliency of color image derivatives: a comparison between computational models and human perception. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  Esa Rahtu,et al.  A Simple and efficient saliency detector for background subtraction , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[6]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Shi-Min Hu,et al.  Global contrast based salient region detection , 2011, CVPR 2011.

[8]  Nuno Vasconcelos,et al.  Discriminant Saliency for Visual Recognition from Cluttered Scenes , 2004, NIPS.

[9]  Hao Wu,et al.  Environment adapted active multi-focal vision system for object detection , 2009, 2009 IEEE International Conference on Robotics and Automation.

[10]  Simone Frintrop,et al.  Goal-Directed Search with a Top-Down Modulated Computational Attention System , 2005, DAGM-Symposium.

[11]  Deepu Rajan,et al.  Salient Region Detection by Modeling Distributions of Color and Orientation , 2009, IEEE Transactions on Multimedia.

[12]  Pietro Perona,et al.  Graph-Based Visual Saliency , 2006, NIPS.

[13]  Simone Frintrop,et al.  A Real-time Visual Attention System Using Integral Images , 2007, ICVS 2007.

[14]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Vincent Lepetit,et al.  A fast local descriptor for dense matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Laurent Itti,et al.  An Integrated Model of Top-Down and Bottom-Up Attention for Optimizing Detection Speed , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[17]  HongJiang Zhang,et al.  Contrast-based image attention analysis by using fuzzy growing , 2003, MULTIMEDIA '03.

[18]  Jan-Mark Geusebroek,et al.  Salient region detection from natural image statistics , 2008 .

[19]  Nuno Vasconcelos,et al.  On the plausibility of the discriminant center-surround hypothesis for visual saliency. , 2008, Journal of vision.

[20]  Sabine Süsstrunk,et al.  Salient Region Detection and Segmentation , 2008, ICVS.

[21]  Jeroen J. A. van Boxtel,et al.  Retinotopic and non-retinotopic stimulus encoding in binocular rivalry and the involvement of feedback. , 2008, Journal of vision.

[22]  Ying Wu,et al.  A unified approach to salient object detection via low rank matrix recovery , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  S. Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, CVPR 2009.

[24]  D. Dacey,et al.  Synergistic center-surround receptive field model of monkey H1 horizontal cells. , 2005, Journal of vision.

[25]  Matti Pietikäinen,et al.  IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, TPAMI-2008-09-0620 1 WLD: A Robust Local Image Descriptor , 2022 .

[26]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Jing Shen,et al.  An Improved Computational Approach for Salient Region Detection , 2010, J. Comput..

[28]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[29]  Wenhui Zhou,et al.  Weber's Law Based Center-Surround Hypothesis for Bottom-Up Saliency Detection , 2011, ICONIP.

[30]  Yael Pritch,et al.  Saliency filters: Contrast based filtering for salient region detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Christof Koch,et al.  Feature combination strategies for saliency-based visual attention systems , 2001, J. Electronic Imaging.

[32]  Mubarak Shah,et al.  Visual attention detection in video sequences using spatiotemporal cues , 2006, MM '06.

[33]  Dietmar Heinke,et al.  Attention and Spatial Resolution: A Theoretical and Experimental Study of Visual Search in Hierarchical Patterns , 2007, Perception.