Wafer‐Scale Single‐Crystalline Ferroelectric Perovskite Nanorod Arrays

1D ferroelectric nanostructures are promising for enhanced ferroelectric and piezoelectric performance on the nanoscale, however, their synthesis at the wafer scale using industrially compatible processes is challenging. In order to advance the nanostructure‐based electronics, it is imperative to develop a silicon‐compatible growth technique yielding high volumetric density and an ordered arrangement. Here, a major breakthrough is provided in addressing this need and ordered and close‐packed single crystalline ferroelectric nanorod arrays, of composition PbZr0.52Ti0.48O3 (PZT), grown on commercial grade 3 in. silicon wafer are demonstrated. PZT nanorods exhibit enhanced piezoelectric and ferroelectric performance compared to thin films of similar dimensions. Sandwich structured architecture utilizing 1D PZT nanorod arrays and 2D reduced graphene oxide thin film electrodes is fabricated to provide electrical connection. Combined, these results offer a clear pathway toward integration of ferroelectric nanodevices with commercial silicon electronics.

[1]  Yu-Meng You,et al.  A Three-Dimensional Molecular Perovskite Ferroelectric: (3-Ammoniopyrrolidinium)RbBr3. , 2017, Journal of the American Chemical Society.

[2]  R. Xiong,et al.  De Novo Discovery of [Hdabco]BF4 Molecular Ferroelectric Thin Film for Nonvolatile Low-Voltage Memories. , 2017, Journal of the American Chemical Society.

[3]  Yu-Meng You,et al.  Ultrafast Polarization Switching in a Biaxial Molecular Ferroelectric Thin Film: [Hdabco]ClO4. , 2016, Journal of the American Chemical Society.

[4]  Longtu Li,et al.  Template-based synthesis and piezoelectric properties of BiScO3–PbTiO3 nanotube arrays , 2016 .

[5]  I. Kim,et al.  Vertically aligned epitaxial KNbO3 nanorod array for piezoelectric energy harvester and second harmonic generator , 2015 .

[6]  Chang-Beom Eom,et al.  Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy. , 2015, ACS nano.

[7]  Seung M. Oh,et al.  Enhanced piezoelectric properties of vertically aligned single-crystalline NKN nano-rod arrays , 2015, Scientific Reports.

[8]  H. Sodano,et al.  Scalable Synthesis of Morphotropic Phase Boundary Lead Zirconium Titanate Nanowires for Energy Harvesting , 2014, Advanced materials.

[9]  Henry A. Sodano,et al.  A Low‐Frequency Energy Harvester from Ultralong, Vertically Aligned BaTiO3 Nanowire Arrays , 2014 .

[10]  A. Kingon,et al.  Activated Solutions Enabling Low‐Temperature Processing of Functional Ferroelectric Oxides for Flexible Electronics , 2014, Advanced materials.

[11]  Chang Kyu Jeong,et al.  Flexible and Large‐Area Nanocomposite Generators Based on Lead Zirconate Titanate Particles and Carbon Nanotubes , 2013 .

[12]  H. Sodano,et al.  Vertically aligned arrays of BaTiO(3) nanowires. , 2013, ACS applied materials & interfaces.

[13]  Aneesh Koka,et al.  High-sensitivity accelerometer composed of ultra-long vertically aligned barium titanate nanowire arrays , 2013, Nature Communications.

[14]  Chong-Yun Kang,et al.  Energy harvester using PZT nanotubes fabricated by template-assisted method , 2013 .

[15]  A. Datta,et al.  Controlled Ti seed layer assisted growth and field emission properties of Pb(Zr0.52Ti0.48)O3 nanowire arrays. , 2013, ACS applied materials & interfaces.

[16]  S. Priya,et al.  Highly ordered Pb(Zr0.52Ti0.48)O3 piezoelectric nanorod arrays , 2013, Nanotechnology.

[17]  H. M. Jang,et al.  Four-states multiferroic memory embodied using Mn-doped BaTiO3 nanorods. , 2013, ACS nano.

[18]  Fei Ma,et al.  Flexible fiber nanogenerator with 209 V output voltage directly powers a light-emitting diode. , 2013, Nano letters.

[19]  Zhong Lin Wang,et al.  Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. , 2012, ACS nano.

[20]  A. K. Tyagi,et al.  Hybrid multiferroic nanostructure with magnetic-dielectric coupling. , 2012, Nano letters.

[21]  T. Natsuki,et al.  Facile synthesis of BaTiO3 nanotubes and their microwave absorption properties. , 2012, ACS applied materials & interfaces.

[22]  Zhong Lin Wang,et al.  Taper PbZr(0.2)Ti(0.8)O3 nanowire arrays: from controlled growth by pulsed laser deposition to piezopotential measurements. , 2012, ACS nano.

[23]  Sergei V. Kalinin,et al.  Free‐Standing Ferroelectric Nanotubes Processed via Soft‐Template Infiltration , 2012, Advanced materials.

[24]  Unyong Jeong,et al.  Assembled monolayers of hydrophilic particles on water surfaces. , 2011, ACS nano.

[25]  Mari-Ann Einarsrud,et al.  One‐Dimensional Nanostructures of Ferroelectric Perovskites , 2011, Advanced materials.

[26]  Michael C. McAlpine,et al.  Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. , 2011, Nano letters.

[27]  D. Szwarcman,et al.  The size-dependent ferroelectric phase transition in BaTiO₃ nanocrystals probed by surface plasmons. , 2011, ACS nano.

[28]  Po-Yuan Chen,et al.  Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface. , 2011, ACS applied materials & interfaces.

[29]  Haixiong Tang,et al.  Nanocomposites with increased energy density through high aspect ratio PZT nanowires , 2011, Nanotechnology.

[30]  Zhong Lin Wang,et al.  Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. , 2010, Nature communications.

[31]  Xi Chen,et al.  1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. , 2010, Nano letters.

[32]  Michael C. McAlpine,et al.  Piezoelectric ribbons printed onto rubber for flexible energy conversion. , 2010, Nano letters.

[33]  Nianqiang Wu,et al.  Large-Area Well-Ordered Nanodot Array Pattern Fabricated With Self-Assembled Nanosphere Template , 2008, IEEE Sensors Journal.

[34]  Xin Li,et al.  Synthesis of ordered arrays of multiferroic NiFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanowires , 2007 .

[35]  Angus I. Kingon,et al.  Direct studies of domain switching dynamics in thin film ferroelectric capacitors , 2005 .

[36]  Wenjian Weng,et al.  Polymer‐Assisted Hydrothermal Synthesis of Single‐Crystalline Tetragonal Perovskite PbZr0.52Ti0.48O3 Nanowires , 2005 .

[37]  Jiyan Dai,et al.  Synthesis and piezoresponse of highly ordered Pb(Zr0.53Ti0.47)O3 nanowire arrays , 2004 .

[38]  J. Melngailis,et al.  Realizing intrinsic piezoresponse in epitaxial submicron lead zirconate titanate capacitors on Si , 2002 .

[39]  Paul Muralt,et al.  Size effect in mesoscopic epitaxial ferroelectric structures: Increase of piezoelectric response with decreasing feature size , 2002 .

[40]  Paul Muralt,et al.  Ferroelectric thin films for micro-sensors and actuators: a review , 2000 .

[41]  G. Dormans,et al.  Measurement of piezoelectric coefficients of ferroelectric thin films , 1994 .

[42]  M. Avrami Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III , 1941 .

[43]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[44]  Henry A. Sodano,et al.  Vertically aligned BaTiO3 nanowire arrays for energy harvesting , 2014 .

[45]  Seung M. Oh,et al.  Low-Temperature Crystallization of Sol-Gel Derived PbZr0.52Ti0.48O3 Thin Films with a Vanadium Additive , 2011 .

[46]  J. Melngailis,et al.  Dynamics of ferroelastic domains in ferroelectric thin films , 2003, Nature materials.

[47]  Richard B. Cass,et al.  Power Generation from Piezoelectric Lead Zirconate Titanate Fiber Composites , 2002 .