Coexistence in small inert gas clusters

The coexistence of solid-like and liquid-like forms of a finite atomic cluster is examined analytically and numerically using model densities of states and partition functions. Within the harmonic normal mode approximation we can calculate the caloric curve, heat capacity and total energy probability distribution of a finite atomic cluster from a single molecular dynamics trajectory. The method requires data from a high energy simulation in the microcanonical ensemble, along with systematic quenching, to provide statistics about local minima. The results provide new insight into the coexistence of solid-like and liquid-like forms of such clusters, with a clear S-bend in the microcanonical caloric curve and a bimodal distribution of the total energy around the transition temperature for a 55 atom system.

[1]  D. Wales,et al.  When do gradient optimisations converge to saddle points , 1992 .

[2]  Andreoni,et al.  Melting of small gold particles: Mechanism and size effects. , 1991, Physical review letters.

[3]  D. Wales,et al.  How the range of pair interactions governs features of multidimensional potentials , 1990 .

[4]  William H. Press,et al.  Numerical recipes , 1990 .

[5]  R. Whetten,et al.  Statistical thermodynamics of the cluster solid-liquid transition. , 1990, Physical review letters.

[6]  R. S. Berry,et al.  When the melting and freezing points are not the same , 1990 .

[7]  T. Beck,et al.  Dynamics of diffusion in small cluster systems , 1990 .

[8]  John E. Adams,et al.  Instantaneous normal mode analysis as a probe of cluster dynamics , 1990 .

[9]  David J. Wales,et al.  Melting and freezing of small argon clusters , 1990 .

[10]  D. Wales Transition states for Ar55 , 1990 .

[11]  Marc H. Brodsky,et al.  Progress in Gallium Arsenide Semiconductors , 1990 .

[12]  Berry,et al.  Freezing, melting, spinodals, and clusters. , 1989, Physical review letters.

[13]  J. Jortner,et al.  Energetic and thermodynamic size effects in molecular clusters , 1989 .

[14]  N. Quirke The Microcrystal Melting Transition , 1988 .

[15]  Thomas L. Beck,et al.  The interplay of structure and dynamics in the melting of small clusters , 1988 .

[16]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[17]  Thomas L. Beck,et al.  Rare gas clusters: Solids, liquids, slush, and magic numbers , 1987 .

[18]  R. Stephen Berry,et al.  The onset of nonrigid dynamics and the melting transition in Ar7 , 1986 .

[19]  Thomas L. Beck,et al.  Solid–liquid phase changes in simulated isoenergetic Ar13 , 1986 .

[20]  F. Stillinger,et al.  Point defects in bcc crystals: Structures, transition kinetics, and melting implications , 1984 .

[21]  Ping Sheng,et al.  The melting behavior of small clusters of atoms , 1984 .

[22]  R. Berry,et al.  Melting of clusters and melting , 1984 .

[23]  K. Gubbins,et al.  A molecular dynamics study of liquid drops , 1984 .

[24]  Thomas A. Weber,et al.  Hidden structure in liquids , 1982 .

[25]  A. Pertsin,et al.  A Monte Carlo study of the structure and thermodynamic behaviour of small Lennard-Jones clusters , 1980 .

[26]  Yoseph Imry,et al.  Finite-size rounding of a first-order phase transition , 1980 .

[27]  D. Lynden-Bell,et al.  On the negative specific heat paradox , 1977 .

[28]  Richard D. Etters,et al.  Thermodynamic properties of small aggregates of rare-gas atoms , 1975 .

[29]  D. Mcginty Molecular dynamics studies of the properties of small clusters of argon atoms , 1973 .

[30]  D. Mcginty The single-configuration approximation in the calculation of the thermodynamic properties of microcrystalline clusters , 1972 .

[31]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[32]  A. Mackay A dense non-crystallographic packing of equal spheres , 1962 .

[33]  P. Morse Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels , 1929 .

[34]  Janet E. Jones,et al.  On the Calculation of Certain Crystal Potential Constants, and on the Cubic Crystal of Least Potential Energy , 1925 .

[35]  J. Rose,et al.  Towards elucidating the interplay of structure and dynamics in clusters: Small KCl clusters as models , 1992 .

[36]  D. Wales Instantaneous normal mode analysis and coexistence phenomena in small clusters , 1991 .

[37]  R. Berry,et al.  Dynamics and Potential Surfaces of Small Clusters , 1990 .

[38]  Robert L. Whetten,et al.  Capillarity theory for the coexistence of liquid and solid clusters , 1988 .

[39]  R. Berry,et al.  Melting and surface tension in microclusters , 1983 .

[40]  J. J. Burton Free energy of small face centred cubic clusters of atoms , 1973 .

[41]  W. Forst,et al.  Theory of Unimolecular Reactions , 1973 .

[42]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .