Convergence of finite difference schemes for conservation laws in several space dimensions

In this paper, we apply the general method we have presented elsewhere and prove the convergence of a class of explicit and high-order accurate finite difference schemes for scalar nonlinear hyperbolic conservation laws in several space dimensions. We consider schemes constructed—from an £-scheme— by the corrected antidiffusive flux approach. We derive "sharp" entropy inequalities satisfied by both ^-schemes and the high-order accurate schemes under consideration. These inequalities yield uniform estimates of the discrete space derivatives of the approximate solutions, which are weaker than the so-called BV (i.e., bounded variation) estimates but sufficient to apply our previous theory.

[1]  Steven Schochet,et al.  Examples of measure-valued solutions , 1989 .

[2]  Sukumar Chakravarthy,et al.  High Resolution Schemes and the Entropy Condition , 1984 .

[3]  P. Lax,et al.  Systems of conservation laws , 1960 .

[4]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[5]  Chi-Wang Shu TVB uniformly high-order schemes for conservation laws , 1987 .

[6]  Bernard Dacorogna,et al.  Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals , 1982 .

[7]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[8]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[9]  R. J. Diperna Singularities and oscillations in solutions to conservation laws , 1984 .

[10]  Anders Szepessy,et al.  Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions , 1989 .

[11]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[12]  Jean-Paul Vila,et al.  High-order schemes and entropy condition for nonlinear hyperbolic systems of conservation laws , 1988 .

[13]  R. J. Diperna,et al.  Measure-valued solutions to conservation laws , 1985 .

[14]  M. Crandall,et al.  Monotone difference approximations for scalar conservation laws , 1979 .

[15]  F. Murat,et al.  Compacité par compensation , 1978 .

[16]  R. Perna Compensated compactness and general systems of conservation laws , 1985 .

[17]  P. Lax,et al.  Difference schemes for hyperbolic equations with high order of accuracy , 1964 .

[18]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[19]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[20]  R. J. Diperna Compensated compactness and general systems of conservation laws , 1985 .

[21]  Luc Tartar,et al.  The Compensated Compactness Method Applied to Systems of Conservation Laws , 1983 .

[22]  S. F. Davis TVD finite difference schemes and artificial viscosity , 1984 .

[23]  S. Osher,et al.  Numerical viscosity and the entropy condition , 1979 .

[24]  R. J. DiPerna Convergence of approximate solutions to conservation laws , 1983 .

[25]  Gui-Qiang G. Chen,et al.  Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics , 1989 .

[26]  Bernardo Cockburn,et al.  The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws , 1988 .

[27]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[28]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[29]  R. Sanders On convergence of monotone finite difference schemes with variable spatial differencing , 1983 .

[30]  Eitan Tadmor,et al.  Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes , 1984 .

[31]  A. Y. Le Roux,et al.  Convergence of an Antidiffusion Lagrange-Euler Scheme for Quasilinear Equations , 1984 .

[32]  Jonathan Goodman,et al.  On dispersive difference schemes. I , 1988 .

[33]  J. Ball A version of the fundamental theorem for young measures , 1989 .

[34]  C. Jacques,et al.  Uniformly Second Order Convergent Schemes for Hyperbolic Conservation Laws Including Leonard’s Approach , 1989 .

[35]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[36]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[37]  P. Lax Shock Waves and Entropy , 1971 .

[38]  S. Osher Riemann Solvers, the Entropy Condition, and Difference , 1984 .