Numerical modeling of inverted perovskite solar cell based on CZTSSe hole transport layer for efficiency improvement

Abstract. In this work, device modeling of inverted-structure perovskite solar cells employing Cu2ZnSn(SxSe1−x)4 (CZTSxSe1−x) as hole transport layer (HTL) is performed by SCAPS. The bandgap of CZTSxSe1−x can be tuned in a wide range from 0.95 to 1.5 eV through the variation of S doping content, which allows us to adjust the valence band offset (VBO) of the CH3NH3PbI3/CZTSxSe1−x interface. Simulation results indicate that a suitable VBO of 0.25 eV is obtained when S/(S + Se) ratio of CZTSxSe1−x is 0.6, which yields a cell efficiency of 16.75%. Further optimization of the absorber and HTL thickness and doping density in HTL is conducted. Simulation results indicate that the optimal HTL and absorber thickness of are 30 and 700 nm, respectively. Doping concentration of HTL higher than 1019  cm−3 is essential for good device performance. After comprehensive optimization of these parameters, an optimum efficiency of 21.59% is obtained. The research can provide a theoretical guidance for further performance improvement of the device with CZTSxSe1−x as HTL.

[1]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[2]  Nam-Gyu Park,et al.  Stability Issues on Perovskite Solar Cells , 2015 .

[3]  Guzmán Castiblanco,et al.  Estudio de trampas y centros de recombinación en películas delgadas de compuestos híbridos orgánico/inorgánicos con estructura Perovskita , 2020 .

[4]  Marc Burgelman,et al.  Modeling polycrystalline semiconductor solar cells , 2000 .

[5]  Yu-Cheng Chang,et al.  p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells , 2014, Scientific Reports.

[6]  Oleksandr Voznyy,et al.  Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes , 2015, Nature Communications.

[7]  K. Balachander,et al.  Compositional grading of CZTSSe alloy using exponential and uniform grading laws in SCAPS-ID simulation , 2016 .

[8]  Yongbo Yuan,et al.  Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells , 2016, Nature Energy.

[9]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[10]  Y. Hao,et al.  Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement , 2016 .

[11]  Y. Hao,et al.  Device simulation of inverted CH3NH3PbI3−xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer , 2018, Solar Energy.

[12]  C. Brabec,et al.  Effective Ligand Engineering of the Cu2ZnSnS4 Nanocrystal Surface for Increasing Hole Transport Efficiency in Perovskite Solar Cells , 2016 .

[13]  Guangdong Zhou,et al.  Pentacene as a hole transport material for high performance planar perovskite solar cells , 2018, Current Applied Physics.

[14]  Dae‐Hwan Kim,et al.  Comparison of theoretical and experimental results for band-gap-graded CZTSSe solar cell , 2017 .

[15]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[16]  T. Minemoto,et al.  Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation , 2014 .

[17]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[18]  Mohammad Khaja Nazeeruddin,et al.  Organohalide Lead Perovskites for Photovoltaic Applications. , 2016, The journal of physical chemistry letters.

[19]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[20]  Si-Min Dai,et al.  Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells , 2015 .

[21]  J. Ni,et al.  Electron transport layer-free planar perovskite solar cells: Further performance enhancement perspective from device simulation , 2016 .

[22]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[23]  C. Jeon,et al.  A band-gap-graded CZTSSe solar cell with 12.3% efficiency , 2016 .

[24]  Jun-Seok Yeo,et al.  Planar heterojunction perovskite solar cells with superior reproducibility , 2014, Scientific Reports.

[25]  Yiming Liu,et al.  Simulation of perovskite solar cells with inorganic hole transporting materials , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[26]  S. Mohammadnejad,et al.  CZTSSe solar cell efficiency improvement using a new band-gap grading model in absorber layer , 2017 .

[27]  D. Mitzi,et al.  Band alignment at the Cu2ZnSn(SxSe1−x)4/CdS interface , 2011 .

[28]  T. Minemoto,et al.  Theoretical analysis on effect of band offsets in perovskite solar cells , 2015 .

[29]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[30]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[31]  Rafael S Sánchez,et al.  Light-induced effects on Spiro-OMeTAD films and hybrid lead halide perovskite solar cells , 2016 .

[32]  Xuewen Yin,et al.  Solution-processed Kesterite Cu2ZnSnS4 as Efficient Hole Extraction Layer for Inverted Perovskite Solar Cells , 2018, Chemistry Letters.