Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications

This paper reviews the state of phosphor thermometry, focusing on developments in the past 15 years. The fundamental principles and theory are presented, and the various spectral and temporal modes, including the lifetime decay, rise time and intensity ratio, are discussed. The entire phosphor measurement system, including relative advantages to conventional methods, choice of phosphors, bonding techniques, excitation sources and emission detection, is reviewed. Special attention is given to issues that may arise at high temperatures. A number of recent developments and applications are surveyed, with examples including: measurements in engines, hypersonic wind tunnel experiments, pyrolysis studies and droplet/spray/gas temperature determination. They show the technique is flexible and successful in measuring temperatures where conventional methods may prove to be unsuitable.

[1]  J. C. Jackson,et al.  Performance of 1-${\hbox {mm}}^{2}$ Silicon Photomultiplier , 2008, IEEE Journal of Quantum Electronics.

[2]  S. W. Allison Fluorescence Rise Time Measurements for High Temperature Fluorescence-Based Thermometry , 2005 .

[3]  S. W. Allison,et al.  Galvanneal Thermometry with a Thermographic Phosphor System , 1997 .

[4]  Tianshu Liu,et al.  Pressure and Temperature Sensitive Paints , 2004, Experimental Fluid Mechanics.

[5]  Konstantinos Kontis,et al.  Surface Heat Transfer Measurements Inside a Supersonic Combustor by Laser-Induced Fluorescence , 2003 .

[6]  E. N. Harvey,et al.  A History of Luminescence: From the Earliest Times Until 1900 , 2005 .

[7]  Marcus Aldén,et al.  Optical Diagnostics for Characterization of a Full-Size Fighter-Jet Afterburner , 2005 .

[8]  H. Jenssen,et al.  Fluorescence lifetimes for neodymium-doped yttrium aluminum garret and yttrium oxide powders , 1982 .

[9]  Johan Engström,et al.  Demonstration of two-dimensional temperature characterization of valves and transparent piston in a GDI optical engine , 2004 .

[10]  R. Tidecks,et al.  Luminescence of bulk and nanocrystalline cubic yttria , 2001 .

[11]  D. C. Kincaid,et al.  A Water Droplet Evaporation and Temperature Model , 1989 .

[12]  R. B. Hunt,et al.  Fast excited-state relaxation of Eu-Eu pairs in commercial Y2O3: Eu3+ phosphors , 1985 .

[13]  O. Sovers,et al.  Line Shift Method for Phosphor Temperature Measurements , 1976 .

[14]  K. Rajnak,et al.  ELECTRONIC ENERGY LEVELS IN THE TRIVALENT LANTHANIDE AQUO IONS. I. Pr$sup 3+$, Nd$sup 3+$, Pm$sup 3+$, Sm$sup 3+$, Dy$sup 3+$, Ho$sup 3+$, Er$sup 3+$, AND Tm$sup 3$ . , 1968 .

[15]  Джон А. Смит,et al.  Coatings for turbine blades , 2005 .

[16]  Surface Temperature Measurement Using a Laser-Induced Fluorescence Thermal Imaging System , 1994 .

[17]  S. W. Allisona Remote thermometry with thermographic phosphors : Instrumentation and applications , 1997 .

[18]  Paul C. Ivey,et al.  An overview of the measurement errors associated with gas turbine aeroengine pyrometer systems , 2002 .

[19]  David J. S. Birch,et al.  RAPID COMMUNICATION: A new sub-nanosecond LED at 280 nm: application to protein fluorescence , 2004 .

[20]  S. Imanaga,et al.  Luminescence Saturation Effects in Y2O2S: Eu Phosphor , 1980 .

[21]  N. Turro Modern Molecular Photochemistry , 1978 .

[22]  V. Saveliev,et al.  Novel type of avalanche photodetector with Geiger mode operation , 2004 .

[23]  Andrew L. Heyes,et al.  Oxygen quenching of phosphorescence from thermographic phosphors , 2003 .

[24]  M. Cates,et al.  Advances in High Temperature Phosphor Thermometry for Aerospace Applications , 2003 .

[25]  Y. Le Sant,et al.  Surface pressure measurements by using pressure-sensitive paints , 2005 .

[26]  Konstantinos Kontis,et al.  A review of some current research on pressure sensitive paint and thermographic phosphor techniques , 2007, The Aeronautical Journal (1968).

[27]  Bryan Campbell,et al.  Temperature- and Pressure-Sensitive Luminescent Paints in Aerodynamics , 1997 .

[28]  M. Chyu,et al.  Use of a laser-induced fluorescence thermal imaging system for local jet impingement heat transfer measurement , 1995 .

[29]  H. Seyfried,et al.  Laser-induced Phosphorescence for Surface Thermometry in the Afterburner of an Aircraft Engine , 2007 .

[30]  J. W. Holmes,et al.  Analysis of radiometric, lifetime and fluorescent lifetime imaging for pressure sensitive paint , 1998, The Aeronautical Journal (1968).

[31]  Staffan Nilsson,et al.  Laser techniques in acoustically levitated micro droplets. , 2004, Lab on a chip.

[32]  Scott A. Berry,et al.  Hypersonic Boundary-Layer Trip Development for Hyper-X , 2000 .

[33]  Scott A. Berry,et al.  X-38 Experimental Aerothermodynamics , 2004 .

[34]  B. Johansson,et al.  Two-dimensional gas-phase temperature measurements using phosphor thermometry , 2007 .

[35]  L. P. Goss,et al.  Surface thermometry by laser-induced fluorescence , 1989 .

[36]  A. Heyes,et al.  Two-colour phosphor thermometry for surface temperature measurement , 2006 .

[37]  P. Boudreaux,et al.  Development of Temperature-Sensitive Paints for High Temperature Aeropropulsion Applications , 2001 .

[38]  Kirk S. Schanze,et al.  Heat-Transfer Measurements in Hypersonic Flow Using Luminescent Coating Techniques , 2002 .

[39]  J. Pettersson,et al.  Surface temperature of decomposing construction materials studied by laser‐induced phosphorescence , 2005 .

[40]  冨田 栄二,et al.  海外紀行 11th International Symposium on Applications of Laser Techniques to Fluid Mechanicsに参加して , 2003 .

[41]  N. Ronald Merski,et al.  Global Aeroheating Wind-Tunnel Measurements Using Improved Two-Color Phosphor Thermography Method , 1999 .

[42]  K. Kontis,et al.  Surface thermometry by laser-induced fluorescence of Dy3+:YAG , 1999, The Aeronautical Journal (1968).

[43]  Paul C. Ivey,et al.  Optical pyrometry for gas turbine aeroengines , 2004 .

[44]  M. Aldén,et al.  2D-temperature imaging of single droplets and sprays using thermographic phosphors , 2004 .

[45]  V. Saveliev,et al.  Study of the properties of new SPM detectors , 2006, SPIE OPTO.

[46]  C. B. Thomas,et al.  Modeling the fluorescent lifetime of Y2O3:Eu , 1998 .

[47]  J. Bell,et al.  Surface Pressure Measurements Using Luminescent Coatings , 2003 .

[48]  J. Janicka,et al.  Gas compositional and pressure effects on thermographic phosphor thermometry , 2007 .

[49]  Andrew L. Heyes,et al.  Industrial Sensor TBCs: Studies on Temperature Detection and Durability , 2005 .

[50]  C A Royer,et al.  Approaches to teaching fluorescence spectroscopy. , 1995, Biophysical journal.

[51]  Upendra N. Singh,et al.  High energy single-mode all-solid-state, tunable UV laser transmitter , 2006, SPIE Defense + Commercial Sensing.

[52]  Scott A. Berry,et al.  Results of Aerothermodynamic and Boundary-Layer Transition Testing of 0.0362-Scale X-38 (Rev. 3.1) Vehicle in NASA Langley 20-Inch Mach 6 Tunnel , 1997 .

[53]  Henryk Szmacinski,et al.  Fluorescence lifetime-based sensing and imaging. , 1995, Sensors and actuators. B, Chemical.

[54]  Marcus Aldén,et al.  Two-dimensional surface temperature measurements of burning materials , 2002 .

[55]  A. Dreizler,et al.  Spray thermometry using thermographic phosphors , 2006 .

[56]  A. Heyes,et al.  Thermographic Phosphors for Gas Turbines : Instrumentation Development and Measurement Uncertainties , 2002 .

[57]  S. W. Allison,et al.  Proposed laser-induced fluorescence method for remote thermometry inturbine engines , 1986 .

[58]  C. B. Thomas,et al.  A thin film coating for phosphor thermography , 1998 .

[59]  C. Struck,et al.  Eu+35D Resonance Quenching to the Charge‐Transfer States in Y2O2S, La2O2S, and LaOCl , 1970 .

[60]  David L. Beshears,et al.  LED-induced fluorescence diagnostics for turbine and combustion engine thermometry , 2001, SPIE Optics + Photonics.

[61]  F. Urbach,et al.  Introduction to the Luminescence of Solids , 1950 .

[62]  Development of a fiber-optic probe for thermographic phosphor measurements in turbine engines , 1995 .

[63]  M. Cates,et al.  Applications of pulsed-laser techniques and thermographic phosphors to dynamic thermometry of rotating surfaces , 1985 .

[64]  T. Gadfort,et al.  High temperature surface measurements using lifetime imaging of thermographic phosphors: bonding tests , 2001, ICIASF 2001 Record, 19th International Congress on Instrumentation in Aerospace Simulation Facilities (Cat. No.01CH37215).

[65]  S. Larach,et al.  Cathode-ray-tube phosphors: Principles and applications , 1973 .

[66]  Philip Coppens,et al.  A fast mechanical shutter for submicrosecond time-resolved synchrotron experiments. , 2005, Journal of synchrotron radiation.

[67]  V. Golovina,et al.  Novel type of avalanche photodetector with Geiger mode operation , 2004 .

[68]  M. Aldén,et al.  Temperature measurements of single droplets by use of laser-induced phosphorescence. , 2004, Applied optics.

[69]  A. Heyes,et al.  The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications , 2000 .

[70]  Scott A. Berry,et al.  AIAA 98-0881 X-34 EXPERIMENTAL AEROHEATING AT MACH 6 AND 10 , 1998 .

[71]  J. P. Sullivan,et al.  The use of pressure sensitive paints on rotating machinery , 1995, ICIASF '95 Record. International Congress on Instrumentation in Aerospace Simulation Facilities.

[72]  M. Aldén,et al.  Temperature measurements of combustible and non-combustible surfaces using laser induced phosphorescence , 2004 .